首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Core peptide (CP) is a unique peptide derived from the transmembrane sequence of T cell antigen receptor (TCR)-alpha chain that is capable of inhibiting the immune response both in vitro and in animal models of T cell mediated inflammation. CP contains two basic amino acids (lysine and arginine) in its sequence. The presence of these charged residues interspersed between hydrophobic amino acids is important for function. Here in an attempt to understand CP’s biophysical properties leading to activity we have synthesized a number of CP analogues and correlated their model structure with their biological activity. It became apparent that it is not only the charge of the amino acids but also the nature of the polar amino acids themselves and the topography and spacing between them by hydrophobic amino acids, creating a hydrophobic face, that are critical for CP function.Australian Peptide Conference Issue.  相似文献   

2.
The covalent immobilization of a model peptide onto the MAMVE copolymer, via the formation of amide bonds, occurred in moderate yields in aqueous conditions. The improvement of the grafting reaction was achieved by adding at the amino terminus of the model peptide a sequence (tag) of three positively charged amino acids, lysine or arginine, and by taking profit of electrostatic attractive interactions between the negatively charged copolymer and the tagged peptides. The arginine tag was more efficient than the lysine tag for enhancing the immobilization reaction, proving that the effect was due to an electrostic driving force. On the basis of these results, a tentative mechanism is discussed, and Scatchard plots pointed out two regimes of binding. With the first, at low polymer load (up to 50% of saturation for a lysine tag and 60-70% for an arginine tag), the binding occurred with a positive cooperative effect, the already bound peptide participating to the binding of others. A second one for higher coverages, for which the binding occurred with a negative cooperativity, and saturation was reached in the presence of a large excess of peptide.  相似文献   

3.
A peptide from human parotid secretion which inhibited hemagglutination of Bacteroides gingivalis 381 was purified by ultrafiltration followed by DEAE-Sephadex A-25 column chromatography and by gel filtration on Sephadex G-25, and then by reversed-phase HPLC. The complete amino acid sequence of the peptide, determined by automated Edman degradation was as follows; Lys-Phe-His-Glu-Lys-His-His-Ser-His-Arg-Gly-Tyr. The peptide contained 12 residues and the charged amino acids predominated with 4 histidine, 2 lysine, 1 arginine and 1 glutamic acid residues, thus being a histidine-rich peptide. The peptide was an active inhibitor of the hemagglutinating activity of B. gingivalis. Specific binding of tritium-labeled peptide to B. gingivalis cells was demonstrated. These results suggest that the histidine-rich peptide may function as a binding domain for the hemagglutinins of B. gingivalis during agglutination.  相似文献   

4.
M Mosior  S McLaughlin 《Biochemistry》1992,31(6):1767-1773
We studied the binding of peptides containing five basic residues to membranes containing acidic lipids. The peptides have five arginine or lysine residues and zero, one, or two alanines between the basic groups. The vesicles were formed from mixtures of a zwitterionic lipid, phosphatidylcholine, and an acidic lipid, either phosphatidylserine or phosphatidylglycerol. Measuring the binding using equilibrium dialysis, ultrafiltration, and electrophoretic mobility techniques, we found that all peptides bind to the membranes with a sigmoidal dependence on the mole fraction of acidic lipid. The sigmoidal dependence (Hill coefficient greater than 1 or apparent cooperativity) is due to both electrostatics and reduction of dimensionality and can be described by a simple model that combines Gouy-Chapman-Stern theory with mass action formalism. The adjustable parameter in this model is the microscopic association constant k between a basic residue and an acidic lipid (1 less than k less than 10 M-1). The addition of alanine residues decreases the affinity of the peptides for the membranes; two alanines inserted between the basic residues reduces k 2-fold. Equivalently, the affinity of the peptide for the membrane decreases 10-fold, probably due to a combination of local electrostatic effects and the increased loss of entropy that may occur when the more massive alanine-containing peptides bind to the membrane. The arginine peptides bind more strongly than the lysine peptides: k for an arginine residue is 2-fold higher than for a lysine residue. Our results imply that a cluster of arginine and lysine residues with interspersed electrically neutral amino acids can bind a significant fraction of a cytoplasmic protein to the plasma membrane if the cluster contains more than five basic residues.  相似文献   

5.
Basic amino acids play a key role in the binding of membrane associated proteins to negatively charged membranes. However, side chains of basic amino acids like lysine do not only provide a positive charge, but also a flexible hydrocarbon spacer that enables hydrophobic interactions. We studied the influence of hydrophobic contributions to the binding by varying the side chain length of pentapeptides with ammonium groups starting with lysine to lysine analogs with shorter side chains, namely ornithine (Orn), α,γ-diaminobutyric acid (Dab) and α, β-diaminopropionic acid (Dap). The binding to negatively charged phosphatidylglycerol (PG) membranes was investigated by calorimetry, FT-infrared spectroscopy (FT-IR) and monolayer techniques. The binding was influenced by counteracting and sometimes compensating contributions. The influence of the bound peptides on the lipid phase behavior depends on the length of the peptide side chains. Isothermal titration calorimetry (ITC) experiments showed exothermic and endothermic effects compensating to a different extent as a function of side chain length. The increase in lipid phase transition temperature was more significant for peptides with shorter side chains. FTIR-spectroscopy revealed changes in hydration of the lipid bilayer interface after peptide binding. Using monolayer techniques, the contributions of electrostatic and hydrophobic effects could clearly be observed. Peptides with short side chains induced a pronounced decrease in surface pressure of PG monolayers whereas peptides with additional hydrophobic interactions decreased the surface pressure much less or even lead to an increase, indicating insertion of the hydrophobic part of the side chain into the lipid monolayer.  相似文献   

6.
An essential property of human extracellular superoxide dismutase (hEC-SOD) is its affinity for heparin and heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. The C-terminal domain of hEC-SOD plays the major role in this interaction. This domain has an unusually high content of charged amino acids: six arginine, three lysine, and five glutamic acid residues. In this study, we used alanine scanning mutagenesis of charged amino acids in the C-terminal domain to elucidate the requirements for the heparin/heparan sulfate interaction. As a tool in this study, we used a fusion protein comprising the C-terminal domain of hEC-SOD fused to human carbonic anhydrase II (HCAII). The interaction studies were performed using the surface plasmon resonance technique and heparin-Sepharose chromatography. Replacement of the glutamic acid residues by alanine resulted, in all cases, in tighter binding. All alanine substitutions of basic amino acid residues, except one (R205A), reduced heparin affinity. The arginine and lysine residues in the cluster of basic amino acid residues (residues 210-215), the RK-cluster, are of critical importance for the binding to heparin, and arginine residues promote stronger interactions than lysine residues.  相似文献   

7.
A previous study demonstrated the ability of a synthetic peptide homologous to the simian virus 40 T-antigen nuclear transport signal to induce the nuclear transport of carrier proteins and the dependence of peptide-induced transport on a positive charge at the lysine corresponding to amino acid 128 of T antigen. In this investigation synthetic peptides were utilized to examine the effect on transport of amino acid substitutions within the T-antigen nuclear transport signal. Nuclear transport was evaluated by immunofluorescence after microinjection of protein-peptide conjugates into the cytoplasm of mammalian cells. Substitution of other basic amino acids at position 128 revealed a hierarchy for nuclear transport. The rate of nuclear transport was most rapid when a lysine was at position 128 followed in descending order by arginine, D-lysine, ornithine, and p-aminophenylalanine. Peptide-induced nuclear transport was dependent upon a positively charged amino acid at positions 128 and 129, since substitutions of neutral asparagines at these positions abolished transport. However, partial transport was observed with the peptide having an asparagine at position 128 when a high number of peptides were conjugated to the carrier protein.  相似文献   

8.
A peptide screened from a combinatorial peptide library with the sequence EYKSWEYC performed best as a ligand for affinity chromatography of human blood coagulation factor VIII (FVIII). With this peptide immobilized on monolithic CIM columns via epoxy groups we were able to capture FVIII from diluted plasma. Rational substitution of amino acids by spot synthesis revealed that lysine and cysteine can be exchanged for almost all other proteinogenic amino acids without loss of affinity to FVIII. This offers the possibility of site-specific attachment via either one of these residues or the N- or C-terminus. The aliphatic positions O5 (tryptophan) and O7 (tyrosine), together with the charged position O6 (glutamic acid), seem to form the core of the binding unit. In the positions with aliphatic amino acids, substitution by tyrosine or phenylalanine, and in the positions with charged amino acids, substitution by aspartic acid or lysine, preserved the affinity to FVIII. The functionality of the selected peptides was confirmed by affinity chromatography. Selective binding and elution could be achieved.  相似文献   

9.
10.
In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion. Cell detachment assays showed that cell adhesion strength correlated positively with increasing basicity of expressed peptides. Cell adhesion was also shown to be sensitive to buffer ionic strength as well as incubation with soluble peptide (with half maximal inhibition of cell binding at approximately 5 microM peptide). Next, dodecamer peptides cloned into yeast showed that lysine led to stronger interactions than arginine, and that charge distribution affected adhesion strength. We postulate binding to arise from peptide geometries that permit conformation alignment of the basic amino acids towards the surface so that the charged groups can undergo local electrostatic interactions with the surface oxide. Lastly, peptide K1 (-(GK)(6)) was cloned onto the c-terminus of maltose binding protein (MBP) and the resultant mutant protein showed a half-maximal binding at approximately 10(-7)-10(-6) M, which marked a approximately 500- to 1,000-fold binding improvement to sapphire's A-face as compared with wild-type MBP. Targeting proteins to metal oxide surfaces with peptide tags may provide a facile one-step alternative coupling chemistry for the formation of protein bioassays and biosensors.  相似文献   

11.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

12.
Sterol carrier protein-2 (SCP2) is a small, 123 amino acid, protein postulated to play a role in intracellular transport and metabolism of lipids such as cholesterol, phospholipids, and branched chain fatty acids. While it is thought that interaction of SCP2 with membranes is necessary for lipid transfer, evidence for this possibility and identification of a membrane interaction domain within SCP2 has remained elusive. As shown herein with circular dichroism and a direct binding assay, SCP2 bound to small unilamellar vesicle (SUV) membranes to undergo significant alteration in secondary structure. The SCP2 amphipathic N-terminal 32 amino acids, comprised of two alpha-helical segments, were postulated to represent a putative phospholipid interaction site. This hypothesis was tested with a series of SCP2 N-terminal peptides, circular dichroism, and direct binding studies. The SCP2 N-terminal peptide (1-32)SCP2, primarily random coil in aqueous buffer, adopted alpha-helical structure upon interaction with membranes. The induction of alpha-helical structure in the peptide was maximal when the membranes contained a high mole percent of negatively charged phospholipid and of cholesterol. While deletion of the second alpha-helical segment within this peptide had no effect on formation of the first alpha-helix, it significantly weakened the peptide interaction with membranes. Substitution of Leu(20) with Glu(20) in the N-terminal peptide disrupted the alpha-helix structure and greatly weakened the peptide interaction with membranes. Finally, deletion of the first nine nonhelical amino acids had no effect either on formation of alpha-helix or on peptide binding to membranes. N-Terminal peptide (1-32)SCP2 competed with SCP2 for binding to SUV. These data were consistent with the N-terminus of SCP2 providing a membrane interaction domain that preferentially bound to membranes rich in anionic phospholipid and cholesterol.  相似文献   

13.
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.  相似文献   

14.
We describe the isolation of a 3,276 base pair cDNA for the bovine natriuretic peptide receptor-B (NPR-B). Expression of this clone in Cos-P cells demonstrates that it encodes an agonist-dependent guanylyl cyclase. Porcine CNP stimulates the activity of this receptor up to 200-fold with an ED50 of 12±2 nM, whereas brain natriuretic peptide C-type natriuretic peptide (CNP) and atrial natriuretic factor (ANF) are less efficacious. In addition, ligand binding studies indicate that this receptor exhibits the pharmacology appropriate for the bovine NPR-B. CNP binds to Cos-P cell membranes expressing this clone with a Kd of 13±1 pM, and natriuretic peptides compete for [125I]-CNP binding with a rank order of pCNP>pBNP>rANF. Thus, the expressed receptor-guanylyl cyclase exhibits the expected pharmacological profile for ligand binding and cyclase activation of the bovine NPR-B receptor.Abbreviations BSA bovine serum albumin - dNTP deoxynucleotide triphosphate - SDS sodium dodecyl sulfate - DEAE-dextran diethylaminoethyl-dextran - EDTA ethylenediamine tetraacetic acid - Tris Tris(hydroxymethyl)aminomethane - DMSO dimethyl sulfoxide - RP-HPLC reverse phase-high performance liquid chromatography - AMV avian myeloblastosis virus - Arg arginine - Lys lysine  相似文献   

15.
In Escherichia coli a subset of periplasmic proteins is exported through the Tat pathway to which substrates are directed by an NH(2)-terminal signal peptide containing a consensus SRRXFLK "twin arginine" motif. The importance of the individual amino acids of the consensus motif for in vivo Tat transport has been assessed by site-directed mutagenesis of the signal peptide of the Tat substrate pre-SufI. Although the invariant arginine residues are crucial for efficient export, we find that slow transport of SufI is still possible if a single arginine is conservatively substituted by a lysine residue. Thus, in at least one signal peptide context there is no absolute dependence of Tat transport on the arginine pair. The consensus phenylalanine residue was found to be a critical determinant for efficient export but could be functionally substituted by leucine, another amino acid with a highly hydrophobic side chain. Unexpectedly, the consensus lysine residue was found to retard Tat transport. These observations and others suggest that the sequence conservation of the Tat consensus motif is a reflection of the functional importance of the consensus residues. Tat signal peptides characteristically have positively charged carboxyl-terminal regions. However, changing the sign of this charge does not affect export of SufI.  相似文献   

16.
Molecular dynamics (MD) simulations of the N-terminal region of saposin C, containing amino acid residues 4-20 (saposin C4-20), were performed over 2.5 ns in 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers. The simulations revealed several strong specific interactions of lysine 13 (Lys13) and lysine 17 (Lys17) in saposin C4-20 with the anionic phospholipids, which are required for membrane anchoring of the peptide. Membrane anchoring of saposin C4-20 facilitates saposin C-induced liposomal membrane fusion. Substitutions of Lys13 or Lys17 with alanine or glutamic acid led to a substantial loss of saposin C's fusogenicity. However, arginine replacement of Lys13 or Lys17 caused a partial loss of saposin C's fusogenic activity. The membrane anchoring of saposin C was altered in the presence of 0.4 M sodium chloride. Differential salt effects on Lys-mutant saposin Cs were observed using Trp fluorescence analysis. Low salt concentration had a more significant impact on Lys-mutant saposin C with a negatively charged amino acid residue replacement than those mutants with a positively charged or neutral residue replacement. These results indicate that positively charged amino acids at positions 13 and 17 are required for the fusogenic function of saposin C. In addition, the side-chain structure of lysine is crucial to the precise membrane anchoring which is necessary for the total fusion activity of saposin C. The MD simulations and vesicle size measurements of lysine-mutant saposins confirm the importance of the two lysine residues in saposin C4-20 for saposin C-induced fusion of negatively charged phospholipid membranes.  相似文献   

17.
The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40–54) and CBD2 (amino acids 328–377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin.  相似文献   

18.
Our recent molecular dynamics simulation study of hanatoxin 1 (HaTx1), a gating modifier that binds to the voltage sensor of K(+) channels, has shown that HaTx1 has the ability to interact with carbonyl oxygen atoms of both leaflets of the lipid bilayer membrane and to be located at a deep position within the membrane. Here we performed a similar study of GsMTx4, a stretch-activated channels inhibitor, belonging to the same peptide family as HaTx1. Both toxins have an ellipsoidal shape, a belt of positively charged residues around the periphery, and a hydrophobic protrusion. Results show that, like HaTx1, GsMTx4 can interact with the membrane in two different ways. When all the positively charged residues interact with the outer leaflet lipid, GsMTx4 can assume a shallow binding mode. On the other hand, when the electrostatic interaction brings the positively charged groups of K-8 and K-28 into the vicinity of the carbonyl oxygen atoms of the inner leaflet lipids, the system exhibits a deep binding mode. This deep mode is accompanied by local membrane thinning. For both HaTx1 and GsMTx4, our mean force measurement analyses show that the deep binding mode is energetically favored over the shallow mode when a DPPC (dipalmitoyl-phosphatidylcholine) membrane is used at 310 K. In contrast, when a POPC (palmitooleoyl-phosphatidylcholine) membrane is used at 310 K, the two binding modes exhibited similar stability for both toxins. Similar analyses with DPPC membrane at 330 K led to an intermediary result between the above two results. Therefore, the structure of the lipid acyl chains appears to influence the location and the dynamics of the toxins within biological membranes. We also compared the behavior of an arginine and a lysine residue within the membrane. This is of interest because the arginine residue interaction with the lipid carbonyl oxygen atoms mediates the deep binding mode for HaTx1, whereas the lysine residue plays that role for GsMTx4. The arginine residue generally shows smoother dynamics near the lipid carbonyl oxygen atoms than the lysine residue. This difference between arginine and lysine may partly account for the functional diversity of the members of the toxin family.  相似文献   

19.
Electrostatic potentials along the ribosomal exit tunnel are nonuniform and negative. The significance of electrostatics in the tunnel remains relatively uninvestigated, yet they are likely to play a role in translation and secondary folding of nascent peptides. To probe the role of nascent peptide charges in ribosome function, we used a molecular tape measure that was engineered to contain different numbers of charged amino acids localized to known regions of the tunnel and measured chain elongation rates. Positively charged arginine or lysine sequences produce transient arrest (pausing) before the nascent peptide is fully elongated. The rate of conversion from transiently arrested to full-length nascent peptide is faster for peptides containing neutral or negatively charged residues than for those containing positively charged residues. We provide experimental evidence that extraribosomal mechanisms do not account for this charge-specific pausing. We conclude that pausing is due to charge-specific interactions between the tunnel and the nascent peptide.  相似文献   

20.
Substitution of arginine at position 8 of luliberin by the basic amino acids homoarginine, lysine and diaminobutyric acid resulted in analogues in which the luteinizing hormone-releasing activity is markedly reduced, whereas the cross reactivity with specific antibodies to luliberin is preserved. Fluorimetric titrations of these analogues, carried out as with luliberin, revealed pK values of 6.00 +/- 0.05 and of 9.75 +/- 0.15 for His 2 and Try 5 respectively which are essentially the same as in luliberin. However, the rate of collisions between the side chains of His 2 and Trp 3 in these analogues was found to decrease by 36-39%. Substitution at position 8 with the non-basic amino acid omega-nitro arginine yielded an analogue possessing a very low hormonal activity as well as poor recognition of antibodies specific to luliberin. The fluorescence properties of this peptide are markedly different from those of luliberin and its three basic analogues. These results indicate that the functional integrity of the active unit His 2 . . . Tyr 5 . . . Arg 8 in luliberin depends both on size and basicity of the amino acid side chain at position 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号