首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundEscape from apoptosis is an important hallmark of tumor progression and drug resistance in cancer cells. It is well demonstrated that over-expression of human wtp53 in Saccharomyces cerevisiae induces apoptosis by directly targeting the mitochondria. In this study, we showed that how S.cerevisiae escaped from p53 induced apoptosis in the presence of a fermentable carbon source (sucrose), but not on non-fermentable carbon source (glycerol).MethodsMitochondrial fractions from yeast cultures grown in the presence of sucrose or glycerol with and without p53 expression were fractionated and analyzed by LC-MS/MS. Differentially expressed proteins were studied and detailed biochemical analysis for selected proteins was performed.The effect of mitochondrial HXK-2 over-expression induced by p53 in sucrose grown cells on cell survival was evaluated using gene deletion/tagging, co-localisation and mitochondrial ROS detection.ResultsWe observe that mitochondria isolated from p53 over-expressing cells accumulate Pentose phosphate Pathway (PPP) enzymes including glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) which led to enhanced mitochondrial NADPH production only when cells are cultured in sucrose but not glycerol. In contrast, mitochondria isolated from Δhxk2 p53 over-expressing cells grown in sucrose did not accumulate G6PDH and 6PGDH and resulted in defective growth.ConclusionsEnhanced association of HXK2 with the mitochondria with the concomitant accumulation of G6PDG and 6PGDH results in increased NADPH that scavenges ROS and provides resistance to apoptosis.General significanceGiven the extensive similarity of aerobic glycolysis between humans and yeast, the phenomena described here could as well be responsible for the escape of apoptosis in cancer cells.  相似文献   

2.
In this study, we explore the hypothesis that some member of the mitochondrial carrier family has specific uncoupling activity that is responsible for the basal proton conductance of mitochondria. Twenty-seven of the 35 yeast mitochondrial carrier genes were independently disrupted in Saccharomyces cerevisiae. Six knockout strains did not grow on nonfermentable carbon sources such as lactate. Mitochondria were isolated from the remaining 21 strains, and their proton conductances were measured. None of the 21 carriers contributed significantly to the basal proton leak of yeast mitochondria. A possible exception was the succinate/fumarate carrier encoded by the Xc2 gene, but deletion of this gene also affected yeast growth and respiratory chain activity, suggesting a more general alteration in mitochondrial function. If a specific protein is responsible for the basal proton conductance of yeast mitochondria, its identity remains unknown.  相似文献   

3.
Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, we demonstrate that yeast yUng1–GFP protein localizes to both mitochondria and the nucleus, indicating that Ung1p must contain both a mitochondrial localization signal (MLS) and a nuclear localization signal. Our study reveals that the first 16 amino acids at the N-terminus contain the yUng1p MLS. Deletion of 16 amino acids resulted in the yUng1p–GFP fusion protein being transported to the nucleus. We also investigated the intracellular localization of human hUng1p–GFP in yeast. Our data indicate that hUng1p–GFP predominately localizes to the mitochondria. Further analysis identified the N-terminal 16 amino acids as important for localization of hUng1 protein into the mitochondria. Expression of both yeast and human UNG1 cDNA suppressed the frequency of mitochondrial mutation in UNG1-deficient cells. However, expression of yUNG1 in wild-type cells increased the frequency of mutations in mtDNA, suggesting that elevated expression of Ung1p is mutagenic. An increase in the frequency of mitochondrial mutants was also observed when hUNG1 site-directed mutants (Y147C and Y147S) were expressed in mitochondria. Our study suggests that deamination of cytosine is a frequent event in S.cerevisiae mitochondria and both yeast and human Ung1p repairs deaminated cytosine in mitochondria.  相似文献   

4.
Su Z  Chai MF  Lu PL  An R  Chen J  Wang XC 《Planta》2007,226(4):1031-1039
Mtm1p is essential for the posttranslational activation of manganese-containing superoxide dismutase (SOD2) in Saccharomyces cerevisiae; however, whether the same holds true for Arabidopsis thaliana is unknown. In this study, by using the yeast mtm1 mutant complementation method, we identified a putative MTM gene (AtMTM1, At4g27940) that is necessary for SOD2 activation. Further, analysis of SOD activity revealed that an SOD2 defect is rescued in the yeast mutant Y07288 harboring the AtMTM1 gene. Related mRNA-level analysis showed the AtMTM1 gene is induced by paraquat but not by hydrogen peroxide, which indicates that this gene is related to the superoxide scavenger SOD. In addition, an AtMTM1::GFP fusion construct was transiently expressed in the protoplasts, and it was localized to the mitochondria. Furthermore, sequence deletion analysis of AtMTM1 revealed that the code region (amino acid (aa) 60–198) of Mtm1p plays an important role in localization of the protein to the mitochondria. Regulation of AtMTM1 gene expression was analyzed using a fusion construct of the 1,766 bp AtMTM1 promoter and the GUS (β-glucuronidase) reporter gene. The screen identified GUS reporter gene expression in the developing cotyledons, leaves, roots, stems, and flowers but not in the siliques. Our results suggest that AtMTM1 encodes a mitochondrial protein that may be playing an important role in activation of MnSOD1 in Arabidopsis.  相似文献   

5.
In this study, we have investigated the mechanisms used by wild-type p53 (wtp53) to potentiate tumor cell susceptibility to CTL-mediated cell death. We report that wtp53 restoration in a human lung carcinoma cell line Institut Gustave Roussy (IGR)-Heu, displaying a mutated p53, resulted in up-regulation of Fas/CD95 receptor expression associated with an increase of tumor cell sensitivity to the autologous CTL clone, Heu127. However, when IGR-Heu cells were transfected with Fas cDNA, no potentiation to Heu127-mediated lysis was observed, indicating that induction of CD95 is not sufficient to sensitize target cells to CTL killing. Importantly, our data indicate that the effect of wtp53 on the Fas-mediated pathway involves a degradation of short cellular FLICE inhibitory protein resulting in subsequent caspase 8 activation. Furthermore, we demonstrate that wtp53 restoration also resulted in CTL-induced Bid translocation into mitochondria and a subsequent mitochondrial membrane permeabilization leading to cytochrome c release. These results indicate that tumor cell killing by autologous CTL can be enhanced by targeting degranulation-independent mechanisms via restoration of wtp53, a key determinant of apoptotic machinery regulation.  相似文献   

6.
Background information. The nuclear gene hSUV3 (human SUV3) encodes an ATP‐dependent DNA/RNA helicase. In the yeast Saccharomyces cerevisiae the orthologous Suv3 protein is localized in mitochondria, and is a subunit of the degradosome complex which regulates RNA surveillance and turnover. In contrast, the functions of human SUV3 are not known to date. Results. In the present study, we show that a fraction of human SUV3 helicase is localized in the nucleus. Using small interfering RNA gene silencing in HeLa cells, we demonstrate that down‐regulation of hSUV3 results in cell cycle perturbations and in apoptosis, which is both AIF‐ and caspase‐dependent, and proceeds with the induction of p53. Conclusions. In addition to its mitochondrial localization, human SUV3 plays an important role in the nucleus and is probably involved in chromatin maintenance.  相似文献   

7.
8.
We have previously shown that acetic acid activates a mitochondria‐dependent death process in Saccharomyces cerevisiae and that the ADP/ATP carrier (AAC) is required for mitochondrial outer membrane permeabilization and cytochrome c release. Mitochondrial fragmentation and degradation have also been shown in response to this death stimulus. Herein, we show that autophagy is not active in cells undergoing acetic acid‐induced apoptosis and is therefore not responsible for mitochondrial degradation. Furthermore, we found that the vacuolar protease Pep4p and the AAC proteins have a role in mitochondrial degradation using yeast genetic approaches. Depletion and overexpression of Pep4p, an orthologue of human cathepsin D, delays and enhances mitochondrial degradation respectively. Moreover, Pep4p is released from the vacuole into the cytosol in response to acetic acid treatment. AAC‐deleted cells also show a decrease in mitochondrial degradation in response to acetic acid and are not defective in Pep4p release. Therefore, AAC proteins seem to affect mitochondrial degradation at a step subsequent to Pep4p release, possibly triggering degradation through their involvement in mitochondrial permeabilization. The finding that both mitochondrial AAC proteins and the vacuolar Pep4p interfere with mitochondrial degradation suggests a complex regulation and interplay between mitochondria and the vacuole in yeast programmed cell death.  相似文献   

9.
Expression of a proteinaceous elicitor harpinPss, encoded by hrpZ of Pseudomonas syringae pv. syringae 61, under GAL1 promoter in Saccharomyces cerevisiae Y187 resulted in galactose‐inducible yeast cell death (YCD). Extracellular treatment of harpin did not affect the growth of yeast. The observed YCD was independent of the stage of cell cycle. “Petite” mutant of S. cerevisiae Y187 pYEUT‐hrpZ was insensitive to cell death indicating the involvement of mitochondria in this YCD. Loss in mitochondrial potential, but no leakage of Cytochrome c from mitochondria into the cytosol, were notable features in harpinPss‐induced YCD. Cyclosporin A had no effect on hrpZ expressing yeast cells, further confirmed that there was no release of Cytochrome c. Elevation of caspase activity has been reported for the first time in this form of cell death induced by harpin expression. Release of reactive oxygen species and clear loss of membrane integrity were evident with the absence of nuclear fragmentation and chromosomal condensation, while annexin V and propidium iodide staining showed features typical of necrosis. J. Cell. Biochem. 107: 1150–1159, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.  相似文献   

11.
Saccharomyces cerevisiae cells lacking the MDM12 gene product display temperature-sensitive growth and possess abnormally large, round mitochondria that are defective for inheritance by daughter buds. Analysis of the wild-type MDM12 gene revealed its product to be a 31-kD polypeptide that is homologous to a protein of the fission yeast Schizosaccharomyces pombe. When expressed in S. cerevisiae, the S. pombe Mdm12p homolog conferred a dominant-negative phenotype of giant mitochondria and aberrant mitochondrial distribution, suggesting partial functional conservation of Mdm12p activity between budding and fission yeast. The S. cerevisiae Mdm12p was localized by indirect immunofluorescence microscopy and by subcellular fractionation and immunodetection to the mitochondrial outer membrane and displayed biochemical properties of an integral membrane protein. Mdm12p is the third mitochondrial outer membrane protein required for normal mitochondrial morphology and distribution to be identified in S. cerevisiae and the first such mitochondrial component that is conserved between two different species.  相似文献   

12.
In Saccharomyces cerevisiae, the RAM network is involved in cell separation after cytokinesis, cell integrity and cell polarity. The key function of this network is the regulation of the activity of the protein kinase Cbk1p, which is a member of the conserved NDR kinase family. Cbk1p function is controlled by its sub-cellular localization and at least two phosphorylation events: an auto phosphorylation in the kinase domain (S570) and the phosphorylation of a C-terminal hydrophobic motif by an upstream kinase (T743). After a UV mutagenesis, we have isolated 115 independent extragenic suppressors of four ∆ram mutations: ∆tao3, ∆hym1, ∆kic1 and ∆sog2. Over 50% of the suppressors affect a single residue in Cbk1p (S745F), which is close to the phosphorylation site in the hydrophobic motif. Our results show that the CBK1-S745F allele leads to a constitutively active form of Cbk1p that is independent of the upstream RAM network. We hypothesize that the mutant Cbk1-S745Fp mimics the effect of the phosphorylation of T743.  相似文献   

13.
14.
It is now well established that a fraction of stress-induced wtp53 protein rapidly translocates to mitochondria in immortalized and transformed cells in culture. Mitochondrial p53 interacts with anti-apoptotic proteins of the Bcl 2 family at the outer mitochondrial membrane, resulting in membrane permeabilization, release of death effectors such as cytochrome C and subsequent rapid apoptosis. The significance and relevance of this direct mitochondrial p53 program to the overall p53-mediated stress response in vivo is underlined by a number of recent studies in animals and primary cells. They all support a role for this direct pathway in the physiologic and pathophysiologic response to genotoxic and hypoxic insults and occur precisely in those tissues where p53 plays a critical role in mediating apotpotis rather than cell cycle arrest.  相似文献   

15.
Cupriavidus metallidurans CH34 genome contains an ortholog of Atm1p named AtmA (Rmet_0391, YP_582546). In Saccharomyces cerevisiae, the ABC-type transport system Atm1p is involved in export of iron–sulfur clusters from mitochondria into the cytoplasm for assembly of cytoplasmic iron–sulfur containing proteins. An ∆atmA mutant of C. metallidurans was sensitive to nickel and cobalt but not iron cations. AtmA increased also resistance to these cations in Escherichia coli strains that carry deletions of the genes for other nickel and cobalt transport systems. In C. metallidurans, atmA expression was not significantly induced by nickel and cobalt, but repressed by zinc. AtmA was purified as a 70 kDa protein after expression in E. coli. ATPase activity of AtmA was stimulated by nickel and cobalt.  相似文献   

16.
MEMBRANOUS STRUCTURES IN YEASTS   总被引:3,自引:0,他引:3  
1. Most yeast cells carrying out active respiration have spherical or ellipsoidal mitochondria, with plate-like cristae. 2. Cytoplasmic petite strains of Saccharomyces cerevisiae have aberrant mitochondria, often containing whorled membranes. Mutants with deficiencies in the tricarboxylic acid cycle have mitochondria which appear normal when the cells are grown in low levels of glucose. 3. Cells of normal and petite S. cerevisiae grown strictly anaerobically show no recognizable mitochondrial profiles. 4. Carbon substrates which can only be respired promote the development of well-defined mitochondria. In certain facultatively anaerobic yeasts respiration is suppressed by glucose and the mitochondria under these conditions are large, pleomorphic and few in number. Other fermentable carbohydrates do not give this repression. 5. A number of antibacterial antibiotics, which inhibit mitochondrial protein synthesis, cause a disorganization of the mitochondrial cristae. 6. In yeast cells adapting from anaerobic to aerobic conditions mitochondria appear to develop from proliferations of the endoplasmic reticulum, which become progressively more organized. 7. Vacuoles often contain granular material, but in S. cerevisiae the vacuole, which has been described as a lysosome, frequently contains myelin-like lipid inclusions. The material in these inclusions is apparently derived from spherosomes. 8. Endoplasmic reticulum, orientated parallel to the plasmalemma, may be associated with fermentative ability in certain facultatively anaerobic yeasts. Endoplasmic reticulum is also actively involved in the budding process. 9. Normally the yeast-cell plasmalemma shows only minor convolutions, but in chloramphenicol-grown Rhodotorula glutinis the plasmalemma produces vesicular structures termed ‘paramural bodies’. 10. The yeast nuclear membrane has about 200 pores occupying 6–8 % of the total surface area. The nuclear membrane remains intact during mitotic division in yeasts until the daughter nuclei separate.  相似文献   

17.
The basic carboxy terminus of p53 plays an important role in directing the protein into the nuclear compartment. The C terminus of the p53 molecule contains a cluster of several nuclear localization signals (NLSs) that mediate the migration of the protein into the cell nucleus. NLSI, the most active domain, is highly conserved in genetically diverged species and shares perfect homology with consensus NLS sequences found in other nuclear proteins. The other two NLSs, II and III, appear to be less effective and less conserved. Although nuclear localization is dictated primarily by the NLSs inherent in the primary amino acid sequence, the actual nuclear homing can be modified by interactions with other proteins expressed in the cell. Comparison between wild-type p53 and naturally occurring mutant p53 showed that both protein categories could migrate into the nucleus of rat primary embryonic fibroblasts by essentially similar mechanisms. Nuclear localization of both proteins was totally dependent on the existence of functional NLS domains. In COS cells, however, we found that NLS-deprived wild-type p53 molecules could migrate into the nucleus by complexing with another nuclear protein, simian virus 40 large-T antigen. Wild-type and mutant p53 proteins differentially complexed with viral or cellular proteins, which may significantly affect the ultimate compartmentalization of p53 in the cell; this finding suggests that the actual subcellular compartmentalization of proteins may differ in various cell type milieux and may largely be affected by the ability of these proteins to complex with other proteins expressed in the cell. Experiments designed to test the physiological significance of p53 subcellular localization indicated that nuclear localization of mutant p53 is essential for this protein to enhance the process of malignant transformation of partially transformed cells, suggesting that p53 functions within the cell nucleus.  相似文献   

18.
19.
20.
Summary In the petite positive yeast, Saccharomyces cerevisiae, cycloheximide selectively inhibits protein synthesis on cytoplasmic ribosomes, and, as a consequence, nuclear DNA synthesis. Mitochondrial DNA, however, is synthesized for 4–6 h after cessation of protein synthesis. In this paper we show that in contrast to Saccharomyces cerevisiae, synthesis of mitochondrial and nuclear DNA is tightly coordinated in the petite negative yeast Schizosaccharomyces pombe, since inhibition of cytoplasmic protein synthesis leads immediately to cessation of both nuclear and mitochondrial DNA synthesis.Dedicated to Prof. Dr. F. Kaudewitz on occasion of his 60th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号