首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline–saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5–10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O2 gprotein−1 min−1, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day−1, productivity of 433.4 mgprotein l−1 day−1 and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline–alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline–saline conditions.  相似文献   

2.
Benzene has a wide range of industrial applications, but it is also a major source of environmental pollution. The most eco-friendly/cost-effective method of remediation is biodegradation. In the present study, we used a variety of microbial strains in different combinations on a selection of substrate concentrations to determine the most effective degradation processes. Bacterial strains of pure culture (L4, N3, and N6) were isolated from oil sludge in both Luria–Bertani buffer (LB) and nutrient broth media, and identified by 16S-rRNA analysis (≥98% similarity). The degradation experiments were performed using different combinations of bacterial strains (L4, N3, N6, L4 + N3, L4 + N6, N3 + N6, and L4 + N3 + N6) in modified carbon-free media with different concentrations of benzene as a carbon source (60, 100, and 160 mg l−1) at 30 °C. The isolates of L4 (Acc no: FJ686821), N3 (FJ686825) and N6 (FJ868628) were identified as Bacillus spp. using 16S-rRNA gene sequence analysis. All combinations of isolates have the capacity to degrade benzene. However, the L4 + N3 combination was more efficient than the other mixed or single cultures. In the presence of N6 isolate, the degradation rate of benzene decreased, possibly due to inter- and/or intra species interaction amongst the bacteria. The kinetic parameters ‘K m’ of the Lineweaver–Burk regressions conducted as part of this experiment showed that the lower the level of K m was, the better the biodegradation achieved. The results of this study showed that the use of Bacillus strains in benzene decomposition is feasible. In addition, different strain combinations exhibited different degradation patterns, which are attributed to the most efficient mixed cultures of Bacillus spp.  相似文献   

3.
Marine waste is a highly renewable resource for the recovery of several value added metabolites with prospective industrial applications. This study describes the production of enzymes on marine waste and their subsequent use for the extraction of antioxidants from marine waste. Microbispora sp. and Bacillus sp. were grown on colloidal chitin and marine waste for the production of chitinase and protease. Microbispora sp. could produce 10.2 U ml−1 chitinase, whereas Bacillus sp. could produce 38 U ml−1 chitinase and 3.39 U ml−1 protease. The production of antioxidants was optimized using statistical designs and 6.6 units of 35 kDa chitinase from Microbispora sp., 16 units of 25 kDa chitinase from Bacillus sp., 2.3 units of protease, 1.5% marine waste and 36 h incubation gave maximum antioxidant activity. Nearly 5.0 mg of compound with antioxidant activity could be recovered per gram of marine waste. This compound was purified by HPLC and characterized by TLC, FT-IR and proton-NMR as N,N′-diacetylchitobiose. It exhibited 53% superoxide radical scavenging activity, 57% hydroxyl radical scavenging activity and 28% lipid peroxidation inhibition activity. Scale up of the extraction of antioxidant from marine waste and its pharmacological studies can extend its use in medicine.  相似文献   

4.
Dey K  Roy P 《Biotechnology letters》2011,33(6):1101-1105
A Bacillus sp., capable of degrading chloroform, was immobilized in calcium alginate. The beads in 20 g alginate l−1 (about 2 × 108 cells/bead) could be re-used nine times for degradation of chloroform at 40 μM. The immobilized cells had a higher range of tolerance (pH 6.5–9 and 20–41°C) than free cells (pH 7–8.5 and 28–32°C). At 5 g alginate l−1, leakage of the cells from the beads was 0.51 mg dry wt ml−1. This species is the first reported Bacillus that can degrade chloroform as the sole carbon source.  相似文献   

5.
The use of halotolerant phosphate solubilizing bacteria as inoculants to convert insoluble phosphorus of salt-affected soils to an accessible form is a promising strategy to improve the phosphorus ingestion of plants in salt-affected agriculture. A total of four aerobic isolates with biggest clear halos on the 10% NaCl NBRIP medium plate containing tricalcium phosphate were isolated from the rhizospheric soils of native plants growing on the wall of Dagong Ancinet Brine Well, located in Sichuan of China. And these four isolates were classified to the same strain, named QW10-11, and closely related to Bacillus megatherium var. phosphaticum DSM 3228 and B. megaterium ATCC 14581 according to their phenotype and 16S rRNA. However, the Molecular evolutionary evidences of 16S-23S rRNA ISR further suggested that QW10-11, DSM 3228 and ATCC 14581 have respectively fall into the different sub-divisions in intra specific phylogeny. Strain QW10-11 has significantly better ability of tricalcium phosphate solubilization than that of lecithin solubilization. When it grows under pH 4.8–8.0, 24–33°C and 5–10% NaCl, it can exhibit the higher values of solubilized tricalcium phosphate between 59.3 and 71.4 μg ml−1. Furthermore, its tricalcium phosphate solubilizing activity was associated with the release of organic acids. Taken together, our results indicted that QW10-11 from the rhizospheric soils of halobiot of Dagong Ancinet Brine Well is attractive as efficient phosphate solubilizing candidates in the salt-affected agriculture.  相似文献   

6.
Four new Gram-positive, phenol-degrading strains were isolated from the rhizospheres of endemorelict plants Ramonda serbica and Ramonda nathaliae known to exude high amounts of phenolics in the soil. Isolates were designated Bacillus sp. PS1, Bacillus sp. PS11, Streptomyces sp. PS12, and Streptomyces sp. PN1 based on 16S rDNA sequence and biochemical analysis. In addition to their ability to tolerate and utilize high amounts of phenol of either up to 800 or up to 1,400 mg l−1 without apparent inhibition in growth, all four strains were also able to degrade a broad range of aromatic substrates including benzene, toluene, ethylbenzene, xylenes, styrene, halogenated benzenes, and naphthalene. Isolates were able to grow in pure culture and in defined mixed culture on phenol and on the mixture of BTEX (benzene, toluene, ethylbenzene, and xylenes) compounds as a sole source of carbon and energy. Pure culture of Bacillus sp. PS11 yielded 1.5-fold higher biomass amounts in comparison to mixed culture, under all conditions. Strains successfully degraded phenol in the soil model system (2 g kg−1) within 6 days. Activities of phenol hydroxylase, catechol 1,2-dioxygenase, and catechol 2,3-dioxygenase were detected and analyzed from the crude cell extract of the isolates. While all four strains use ortho degradation pathway, enzyme indicative of meta degradation pathway (catechol 2,3-dioxygenase) was also detected in Bacillus sp. PS11 and Streptomyces sp. PN1. Phenol degradation activities were induced 2 h after supplementation by phenol, but not by catechol. Catechol slightly inhibited activity of catechol 2,3-dioxygenase in strains PS11 and PN1.  相似文献   

7.
Alkaliphilic and halophilic Bacillus sp. BG-CS10 was isolated from Zabuye Salt Lake, Tibet. The gene celB, encoding a halophilic cellulase was identified from the genomic library of BG-CS10. CelB belongs to the cellulase superfamily and DUF291 superfamily, with an unknown function domain and less than 58% identity to other cellulases in GenBank. The purified recombinant protein (molecular weight: 62 kDa) can hydrolyze soluble cellulose substrates containing beta-1,4-linkages, such as carboxylmethyl cellulose and konjac glucomannan, but has no exoglucanase and β-glucosidase activities. Thus, CelB is a cellulase with an endo mode of action and glucomannanase activity. Interestingly, the enzyme activity was increased approximately tenfold with 2.5 M NaCl or 3 M KCl. Furthermore, the optimal temperatures were 55°C with 2.5 M NaCl and 35°C without NaCl, respectively. This indicates that NaCl can improve enzyme thermostability. The K m and k cat values of CelB for CMC with 2.5 M NaCl were 3.18 mg mL−1 and 26 s−1, while the K m and k cat values of CelB without NaCl were 6.6 mg mL−1 and 2.1 s−1. Thus, this thermo-stable, salt and pH-tolerant cellulase is a promising candidate for industrial applications, and provides a new model to study salt effects on the structure of protein.  相似文献   

8.
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L−1) at 10–15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L−1) was also noted. On the other hand, the maximum cell dry weight and PHB concentration of 10 and 5.8 g L−1, respectively, were obtained at 5–7.5% (w/v) NaCl. A process comprising two fed-batch cultivations was developed—the first culture aimed at obtaining high cell mass and the second for achieving high yields of ectoine and PHB. In the first fed-batch culture, H. boliviensis was grown in a medium with 4.5% (w/v) NaCl and sufficient levels of monosodium glutamate, NH4+, and PO43−. In the second fed-batch culture, the NaCl concentration was increased to 7.5% (w/v) to trigger ectoine synthesis, while nitrogen and phosphorus sources were fed only during the first 3 h and then stopped to favor PHB accumulation. The process resulted in PHB yield of 68.5 wt.% of cell dry weight and volumetric productivity of about 1 g L−1 h−1 and ectoine concentration, content, and volumetric productivity of 4.3 g L−1, 7.2 wt.%, and 2.8 g L−1 day−1, respectively. At salt concentration of 12.5% (w/v) during the second cultivation, the ectoine content was increased to 17 wt.% and productivity to 3.4 g L−1 day−1.  相似文献   

9.
Bacillus sp. GRE1 isolated from an Ethiopian hyperthermal spring produced raw-starch digesting, Ca2+-independent thermostable α-amylase. Enzyme production in shake flask experiments using optimum nutrient supplements and environmental conditions was 2,360 U l−1. Gel filtration chromatography yielded a purification factor of 33.6-fold and a recovery of 46.5%. The apparent molecular weight of the enzyme was 55 kDa as determined by SDS-PAGE. Presence or absence of Ca2+ produced similar temperature optima of 65–70°C. The optimum pH was in the range of 5.5–6.0. The enzyme maintained 50% of its original activity after 45 min of incubation at 80°C and was stable at a pH range of 5.0–9.0. The V max and K m values for soluble starch were 42 mg reducing sugar min−1 and 4.98 mg starch ml−1, respectively. Strong inhibitors of enzyme activity included Cu2+, Zn2+ and Fe2+. The enzyme coding gene and the deduced protein translation revealed a characteristic but markedly atypical homology to Bacillus species α-amylase sequences. The enzyme hydrolyzed wheat, corn and tapioca starch granules efficiently below their gelatinization temperatures. Rather than the higher oligosaccharides normally produced by Bacillus α-amylases operating at high temperatures, maltose was the major hydrolysis product with the present enzyme.  相似文献   

10.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

11.
Polyhydroxyalkanotes (PHAs), the eco-friendly biopolymers produced by many bacteria, are gaining importance in curtailing the environmental pollution by replacing the non-biodegradable plastics derived from petroleum. The present study was carried out to economize the polyhydroxybutyrate (PHB) production by optimizing the fermentation medium using corn steep liquor (CSL), a by-product of starch processing industry, as a cheap nitrogen source, by Bacillus sp. CFR 256. Response surface methodology (RSM) was used to optimize the fermentation medium using the variables such as corn steep liquor (5–25 g l−1), Na2HPO4 2H2O (2.2–6.2 g l−1), KH2PO4 (0.5–2.5 g l−1), sucrose (5–55 g l−1) and inoculum concentration (1–25 ml l−1). Central composite rotatable design (CCRD) experiments were carried out to study the complex interactions of the variables. The optimum conditions for maximum PHB production were (g l−1): CSL-25, Na2HPO4 2H2O-2.2, KH2PO4 − 0.5, sucrose − 55 and inoculum − 10 (ml l−1). After 72 h of fermentation, the amount of PHA produced was 8.20 g l−1 (51.20% of dry cell biomass). It is the first report on optimization of fermentation medium using CSL as a nitrogen source, for PHB production by Bacillus sp.  相似文献   

12.
The plant growth–promoting potentials, production of siderophore and solubilization of insoluble phosphorus (P) and zinc and lead by the chromium (vi) -reducing Bacillus species, PSB 1, PSB 7, and PSB 10, was assessed both in the presence and absence of chromium under in vitro conditions. The Bacillus strains tolerated chromium up to the concentration of 500 (PSB1), 400 (PSB7), and 550 μg ml−1 (PSB10), respectively, on nutrient agar plates. Bacillus sp. PSB 10 reduced Cr (vi) by 87% at pH 7, which was followed by Bacillus sp. PSB 1 (83%) and PSB 7 (74%) in nutrient broth after 120 h of incubation. A concentration of 50 μg ml−1 of Cr (vi) was completely reduced by Bacillus sp. PSB 1 and PSB 10 (after 100 h) and PSB 7 (after 120 h). The Bacillus strains PSB 1, PSB 7, and PSB 10 produced 19.3, 17.7, and 17.4 μg ml−1 of indole acetic acid, respectively, in luria bertani broth at 100 μg ml−1 of tryptophan, which consistently decreased with an increase in chromium concentration. The Bacillus strains were positive for siderophore, HCN, and ammonia both in the absence and presence of chromium. The Bacillus strains solubilized 375 (PSB 1), 340 (PSB 7), and 379 (PSB 10) μg ml−1 P, respectively, in Pikovskaya broth devoid of chromium. In contrast, chromium at 150 μg ml−1 reduced the amount of P solubilized by 17 (PSB 1), 15 (PSB 7), and 9% (PSB 10) compared to control. The tested bacterial strains solubilized a considerable amount of zinc and lead in nutrient broth both in the absence and presence of chromium. Generally, the chromium reduction and the plant growth–promoting potentials of chromium-reducing Bacillus were strongly correlated at the tested concentration of chromium. The present observations demonstrated that the chromium-reducing, metal-solubilizing, and plant growth–promoting potentials of the Bacillus strains PSB1, PSB 7, and PSB10 were not adversely affected by the chromium application and, hence, may be applied for raising the productivity of crops under metal-contaminated soils.  相似文献   

13.
Phosphate solubilization activity of rhizobia native to Iranian soils   总被引:1,自引:0,他引:1  
Agricultural soils in Iran are predominantly calcareous with very low plant available phosphorus (P) content. In addition to their beneficial N2-fixing activity with legumes, rhizobia can improve plant P nutrition by mobilizing inorganic and organic P. Isolates from different cross-inoculation groups of rhizobia, obtained from Iranian soils were tested for their ability to dissolve inorganic and organic phosphate. From a total of 446 rhizobial isolates tested for P solubilization by the formation of visible dissolution halos on agar plates, 198 (44%) and 341(76%) of the isolates, solubilized Ca3(PO4)2 (TCP) and inositol hexaphosphate (IHP), respectively. In the liquid Sperber TCP medium, phosphate-solubilizing bacteria (Bacillus sp. and Pseudomonas fluorescens) used as positive controls released an average of 268.6 mg L−1 of P after 360 h incubation. This amount was significantly (P < 0.05) higher than those observed with all rhizobia tested. The group of Rhizobium leguminosarum bv. viciae mobilized in liquid TCP Sperber medium significantly (P < 0.05) more P (197.1 mg L−1 in 360 h) than other rhizobia tested,. This group also showed the highest dissolution halo on the TCP solid Sperber medium. The release of soluble P was significantly correlated with a drop in the pH of the culture filtrates indicating the importance of acid production in the mobilization process. None of the 70 bradyrhizobial isolates tested was able to solubilize TCP. These results indicate that many rhizobia isolated from soils in Iran are able to mobilize P from organic and inorganic sources and this beneficial effect should be tested with crops grown in Iran.  相似文献   

14.
Consistent with its precloning characterization from the cellulolytic Bacillus sp., β-1,4-endoglucanase purified from the recombinant E. coli exhibited maximum activity at 60°C and pH 7.0. It was highly specific for CMC hydrolysis, with stability up to 70°C and over a pH range of 6.0–8.0. The K m and V max values for CMCase activity of the enzyme were 4.1 mg/ml and 25 μmole/ml min−1, respectively. The purified enzyme was a monomer of 65 kDa, as determined by SDS-PAGE. The presence of sucrose and IPTG in fermentation media increased the endoglucanase activity of the recombinant enzyme to 5.2-folds as compared with that of the actual one.  相似文献   

15.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

16.
The effect of glucose addition (0 and 500 μg C g−1 soil) and nitrate (NO3) addition (0, 10, 50 and 500 μg NO3–N g−1 soil) on nitric oxide reductase (cnorB) gene abundance and mRNA levels, and cumulative denitrification were quantified over 48 h in anoxic soils inoculated with Pseudomonas mandelii. Addition of glucose-C significantly increased cnorB p (P. mandelii and related species) mRNA levels and abundance compared with soil with no glucose added, averaged over time and NO3 addition treatments. Without glucose addition, cnorB p mRNA levels were higher when 500 μg NO3–N g−1 soil was added compared with other NO3 additions. In treatments with glucose added, addition of 50 μg NO3–N g−1 soil resulted in higher cnorB p mRNA levels than soil without NO3 but was not different from the 10 and 500 μg NO3–N g−1 treatments. cnorB p abundance in soils without glucose addition was significantly higher in soils with 500 μg NO3–N g−1 soil compared to lower N-treated soils. Conversely, addition of 500 μg NO3–N g−1 soil resulted in lower cnorB p abundance compared with soil without N-addition. Over 48 h, cumulative denitrification in soils with 500 μg glucose-C g−1 soil, and 50 or 500 μg NO3–N g−1 was higher than all other treatments. There was a positive correlation between cnorB p abundance and cumulative denitrification, but only in soils without glucose addition. Glucose-treated soils generally had higher cnorB p abundance and mRNA levels than soils without glucose added, however response of cnorB p abundance and mRNA levels to NO3 supply depended on carbon availability.  相似文献   

17.
The present study examined the effects of plant growth hormones, incubation period, biotic (Trametes versicolor, Mucor sp., Penicillium notatum, Rhizopus stolonifer, and Fusarium oxysporum) and abiotic (NaCl, MgSO4, FeSO4, ZnSO4, and FeCl3) elicitors on cell growth and α-tocopherol and pigment (red and yellow) productions in Carthamus tinctorius cell cultures. The cell growth and α-tocopherol and pigment contents improved significantly on Murashige and Skoog (MS) liquid medium containing 50.0 μM α-naphthalene acetic acid (NAA) and 2.5 μM 6-Benzyladenine (BA) at 28 days of incubation period. Incorporation of T. versicolor (50 mg l−1) significantly enhanced the production of α-tocopherol (12.7-fold) and red pigment (4.24-fold). Similarly, supplementation of 30 mg l−1 T. versicolor (7.54-fold) and 70 mg l−1 Mucor sp. (7.40-fold) significantly increased the production of yellow pigment. Among abiotic elicitors, NaCl (50–70 mg l−1) and MgSO4 (10–30 mg l−1) significantly improved production of α-tocopherol (1.24-fold) and red pigment (20-fold), whereas yellow pigment content increased considerably by all the abiotic elicitor treatments. Taken together, the present study reports improved productions of α-tocopherol and the pigment as a stress response of safflower cell cultures exposed to these elicitors.  相似文献   

18.
Pollution of terrestrial surfaces and aquatic systems by hexavalent chromium, Cr(VI), is a worldwide public health problem. A chromium resistant bacterial isolate identified as Exiguobacterium sp. GS1 by 16S rRNA gene sequencing displayed high rate of removal of Cr(VI) from water. Exiguobacterium sp. GS1 is 99% identical to Exiguobacterium acetylicum. The isolate significantly removed Cr(VI) at both high and low concentrations (1–200 μg mL−1) within 12 h. The Michaelis–Menten K m and V max for Cr(VI) bioremoval were calculated to be 141.92 μg mL−1 and 13.22 μg mL−1 h−1, respectively. Growth of Exiguobacterium sp. GS1 was indifferent at 1–75 μg mL−1 Cr(VI) in 12 h. At initial concentration of 8,000 μg L−1, Exiguobacterium sp. GS1 displayed rapid bioremoval of Cr(VI) with over 50% bioremoval in 3 h and 91% bioremoval in 8 h. Kinetic analysis of Cr(VI) bioremoval rate revealed zero-order in 8 h. Exiguobacterium sp. GS1 grew and significantly reduced Cr(VI) in cultures containing 1–9% salt indicating high salt tolerance. Similarly the isolate substantially reduced Cr(VI) over a wide range of temperature (18–45  °C) and initial pH (6.0–9.0). The T opt and initial pHopt were 35–40  °C and 7–8, respectively. Exiguobacterium sp. GS1 displayed a great potential for bioremediation of Cr(VI) in diverse complex environments.  相似文献   

19.
This study was designed to identify rhizobial strains specific to greengram expressing higher tolerance against insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide-stress. Of the 50 bradyrhizobial isolates, the Bradyrhizobium sp. strain MRM6 showed tolerance up to 1,600 μg mL−1 against each of fipronil and pyriproxyfen. The tolerant Bradyrhizobium sp. (vigna) produced plant growth promoting substances in substantial amounts, both in the presence and absence of insecticides. The strain MRM6 was further used to investigate its impact on greengram grown in soils treated with 200 (the recommended dose), 400 and 600 μg kg−1 soil of fipronil and 1,300 (the recommended dose), 2,600 and 3,900 μg kg−1 soil of pyriproxyfen. Fipronil at 600 μg kg−1 soils and pyriproxyfen at 3,900 μg kg−1 soils had greatest toxic effects and decreased plant biomass, symbiotic efficiency, nutrient uptake and seed yield of greengram plants. The Bradyrhizobium sp. (vigna) inoculant when used with fipronil and pyriproxyfen significantly increased the measured parameters compared to the plants grown in soils treated solely with the same concentration of each insecticide. This study inferred that the Bradyrhizobium sp. (vigna) strain MRM6 may be exploited as bio-inoculant to increase the productivity of greengram exposed to insecticide-stressed soils.  相似文献   

20.
Experimental ecology methods and chlorophyll fluorescence technology were used to study the effects of different concentrations of manganese (10−12– 10−4 mol L−1) on the growth, photosystem II and superoxide dismutase (SOD) activity of Amphidinium sp. MACC/D31. The results showed that manganese had a significant effect on the growth rate, fluorescence parameters (maximal photochemical efficiency of PSII (F v /F m ), photochemical quenching (qP) and non-photochemical quenching (NPQ)) in the exponential stage (days 1–3) and SOD activity of Amphidinium sp. (P < 0.05). F v/F m in the exponential stage in 10−12 mol L−1 manganese concentration was significantly lower whilst qP and NPQ significantly higher than those in the other concentrations. F v /F m (days 6–9) in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations. F v /F m (days 3–6) increased with increased concentration of manganese from 10−12 to 10−4 mol L−1. The values of qP and NPQ decreased with decreased concentrations of manganese, except for those in days 4–6. F v /F m under each concentration increased earlier and decreased later with culture stage whilst NPQ decreased earlier and increased later. The SOD activity increased with increased concentration of manganese from 10−12 to 10−8 mol L−1. The SOD activity in 10−4 mol L−1 manganese was significantly higher than those in the other concentrations and in 10−12 mol L−1 manganese, it was significantly lower than those in the other concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号