首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants of low stature may benefit from the presence of large herbivores through removal of tall competitive neighbours and increased light availability. Accordingly, removal of grazers has been predicted to disfavour small species. In addition to this indirect beneficial effect, the population dynamics of plants is strongly influenced by variation in external conditions such as temperature and precipitation. However, few studies have examined the interaction between large herbivores and inter-annual variation in climate for the population dynamics of small plant species not preferred by herbivores. We studied three populations of the perennial herb Viola biflora exposed to different sheep densities (high, low and zero) for 6 years in a field experiment. Plants were also impacted by invertebrate and small vertebrate herbivores (rodents). Rates of growth were marginally higher at high sheep densities, and during warm summers both survival and growth were higher when sheep were present. Thus, while the height of tall herbs was positively related to July temperature, it was less so in the treatments with sheep, suggesting that sheep reduce the negative effects of interspecific competition for this small herb. Life table response experiment analyses revealed that the population growth rate (λ) was slightly lower in the absence of sheep, but between-year variation in λ was larger than variation among sheep density treatments. λ was negatively related to July temperature, with an additional negative effect of vertebrate grazing frequency (sheep or rodent grazing). The evidence from this 6-year study suggests that the population dynamics of Viola biflora is determined by a complex interplay between climate and grazing by both large and small herbivores.  相似文献   

2.
The dynamics of plant populations in arid environments are largely affected by the unpredictable environmental conditions and are fine-tuned by biotic factors, such as modes of recruitment. A single species must cope with both spatial and temporal heterogeneity that trigger pulses of sexual and clonal establishment throughout its distributional range. We studied two populations of the clonal, purple prickly pear cactus, Opuntia macrocentra, in order to contrast the factors responsible for the population dynamics of a common, widely distributed species. The study sites were located in protected areas that correspond to extreme latitudinal locations for this species within the Chihuahuan Desert. We studied both populations for four consecutive years and determined the demographic consequences of environmental variability and the mode of reproduction using matrix population models, life table response experiments (LTREs), and loop and perturbation analyses. Although both populations seemed fairly stable (population growth rate, λ∼1), different demographic parameters and different life cycle routes were responsible for this stability in each population. In the southernmost population (MBR) LTRE and loop and elasticity analyses showed that stasis is the demographic process with the highest contributions to λ, followed by sexual reproduction, and clonal propagation contributed the least. The northern population (CR) had both higher elasticities and larger contributions of stasis, followed by clonal propagation and sexual recruitment. Loop analysis also showed that individuals in CR have more paths to complete a life cycle than those in MBR. As a consequence, each population differed in life history traits (e.g., size class structure, size at sexual maturity, and reproductive value). Numerical perturbation analyses showed a small effect of the seed bank on the λ of both populations, while the transition from seeds to seedlings had an important effect mainly in the northern population. Clonal propagation (higher survival and higher contributions to vital rates) seems to be more important for maintaining populations over long time periods than sexual reproduction.  相似文献   

3.
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter‐genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well‐forested landscape and two in isolated forest remnants. We constructed stage‐based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well‐forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade‐offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.  相似文献   

4.
The relative importance of sexual and clonal reproduction for population growth in clonal plants is highly variable. Clonal reproduction is often more important than sexual reproduction but there is considerable interspecific variation and the importance of the two reproductive modes can change with environmental conditions. We carried out a demographic study on the woodland strawberry (Fragaria vesca), a widespread clonal herb, at 12 sites in Switzerland during 2 years. Study sites were selected in two different habitats, i.e., forest and forest edge. We used periodic matrix models to estimate annual population growth rates and carried out prospective analyses to identify life cycle components that influence population growth rates most. Retrospective analyses were applied to study how the two different habitats affected population dynamics. Furthermore, we tested whether trade-offs between sexual and clonal reproduction occurred. There were large differences in annual population growth rates between sites and large within-site differences between years. Results of the prospective analyses clearly indicate that clonal reproduction is the dominant reproductive pathway whereas sexual reproduction is rather insignificant for population growth. Compared to forest habitats, forest edge habitats had higher population growth rates in the first year but smaller growth rates in the second year. We attribute these differing habitat effects to different water availabilities during consecutive years. No trade-offs between sexual and clonal reproduction were found. In conclusion, population growth of F. vesca relies heavily on clonal reproduction. Furthermore, reproduction and survival rates of F. vesca depend highly on spatio-temporal variation of environmental conditions.  相似文献   

5.
Clonal plant species have been shown to adopt different strategies to persist in heterogeneous environments by changing relative investments in sexual reproduction and clonal propagation. As a result, clonal diversity and genetic variation may be different along environmental gradients. We examined the regional and local population structure of the clonal rhizomatous forest herb Paris quadrifolia in a complex of forest fragments in Voeren (Belgium). Relationships between population size (the number of shoots), shoot density (the number of shoots per m2) and local growth conditions were investigated for 47 populations. Clonal diversity and genetic variation within and among 19 populations were investigated using amplified fragment length polymorphism markers. To assess the importance of sexual reproduction, seed set, seed weight and germination success were determined in 18 populations. As predicted, local growth conditions largely affected population distribution, size and density of P. quadrifolia. Populations occurring in moist and relatively productive sites contained significantly more shoots. Here, shoots were also much more sparsely distributed compared to populations occurring in dry and relatively unproductive sites, where shoots showed a strongly aggregated distribution pattern. Clonal diversity was relatively high, compared with other clonal species (G/N ratio = 0.43 and Simpson’s D=0.81). Clonal diversity significantly (P<0.01) decreased with increasing shoot density while molecular genetic variation was significantly (P<0.01) affected by population size and local environmental conditions. Lack of recruitment and out-competition of less-adapted genotypes may explain the decreased genetic variation in dry sites. Analysis of molecular variance revealed significant genetic variation among populations (Φ ST=0.42, P<0.001), whereas pairwise genetic distances were not correlated to geographic distances, suggesting that gene flow among populations is limited. Finally, the number of generative shoots, the number of seeds per fruit and seed weight were significantly and positively related to population size and local growth conditions. We conclude that under stressful conditions populations of clonal forest plant species can slowly evolve into remnant populations characterized by low levels of genetic variation and limited sexual reproduction. Conservation of suitable habitat conditions is therefore a prerequisite for effective long-term conservation of clonal forest plant species.  相似文献   

6.
Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962–2004) of data from 17 locations and a capture–mark–recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (λ). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in λ. Our analysis indicated that λ was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in λ. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

8.
In many species of mammals, adults play an important role in influencing the survival and/or reproduction of juveniles. Adult males could have a negative effect on population density when their absence becomes a limiting factor in female fertilization. We tested the hypotheses that the absence of overwintering males (adult males) reduces the population growth rate through a delay in the onset of reproductive activity of Cohort 1 females in Calomys venustus populations. The study was carried out in two control and two experimental enclosures (0.25 ha). Adult males were removed after their offspring were born. Weekly trapping sessions were carried out from spring to autumn. To estimate population growth rates (λ), apparent survival (ϕ) and seniority probability (γ) were estimated using capture–mark-recapture models. Models were constructed with these two parameters and recapture probability (p) constrained to vary as a function of time, enclosure and/or treatment. We derived estimates of population growth rates through the estimates of ϕ and γ. The best models for ϕ and γ did not show a treatment effect. Variability between the four enclosures was greater than between control and experimental enclosures. Enclosures had different growth rates at the beginning of the study but were equaled at the end. Temporal variation in population growth rates was a result of temporal variation of γ. The two controls showed the highest growth rates earlier in time. The results did not support the hypothesis tested in this study. It seems that the number of overwintering males do not affect the population growth rate.  相似文献   

9.
We studied the impact of the seed damaging gall midge larva Geomyia alpina on its perennial alpine host plant Geum reptans. We analysed the effect of seed predation on reproduction by seeds, i.e. seed number, seed mass, and seed viability and on growth and clonal propagation of non-protected plants in comparison to plants protected from predation by an insecticide. Additionally, we assessed the consequences of seed predation for population growth using matrix projection modelling. Seed predation resulted in a decrease in total seed mass per flower head by 23.8% in non-protected plants (P < 0.05). Individual seed mass decreased with increasing infestation intensity (P < 0.05). Seed number remained unaffected because the sucking feeding behaviour by gall midge larvae does not evoke seed abortion. Percent germination of seeds from non-protected plants was reduced by 97.9% compared to seeds from protected plants. According to reduced seed viability, modelling revealed a decrease in population growth rate from λ = 1.055 to λ = 1.041. Predation did neither influence total plant biomass nor biomass fractions. But stolon dry-weight of non-protected plants increased by 24.1% (P < 0.05), which may indicate a trade-off between sexual reproduction and clonal propagation. Our results demonstrate that despite substantial reduction of viable seeds, predation by gall midge larvae only slightly affected population growth of G. reptans suggesting that in this alpine species, persistence by longevity and clonal propagation can balance potential seed losses by predation, at least for local population growth.  相似文献   

10.
Sustainable use of nontimber forest products (NTFPs) can be affected by levels of extractions as well as by other anthropogenic influences such as fire and grazing. We examined the effects of fire on the demography of Phyllanthus emblica, an important NTFP in the forests of Biligiri Rangan Hills, India. We then assessed demographic responses to the combined effects of fire and current fruit harvesting patterns. Fruits of Phyllanthus are commercially harvested by an indigenous forest dwelling people. Using matrix population models, we compared demographic indices across a chronosequence of time since last fire. Population growth rates (λ) ranged from 0.7692 to 1.1443 across the five times since last fire. λ was the lowest at times since last fire of 2 and 3 yr. Frequent fires increased time to maturity by altering growth and survival rates, thereby causing a demographic shift from growth to regressions or negative growth. Elasticity analysis revealed that stasis of adults makes the biggest contribution to λ. Simulations of periodic and stochastic fire regimes suggest that higher λ and population persistence can be achieved at fire-return intervals of ≥7 and ≥9 yr, respectively. These fire-return intervals became longer when the simulations included harvesting and fire. Extinction probabilities under the current fire regimes (every 2–3 yr) suggest that populations will decline to lower densities. Our findings provide critical information for developing guidelines for sustainable use and management of NTFPs in Biligiri Rangan Hills, and demonstrate the need to incorporate various human-generated physical regimes in assessing sustainability of NTFPs.  相似文献   

11.
Decreasing population size and increasing isolation may lead to reduced plant fitness. These effects of habitat fragmentation may especially apply to populations close to the margin of their geographical range, where populations generally are often smaller and more isolated, and the environment is less favourable than at the range centre. In this context we studied north-west German range-margin populations of Narthecium ossifragum (L.) HUDS., a clonal, perennial herb typical for acidic and nutrient-poor wet heathlands. We asked whether plant fitness and reproduction of the range-margin populations were affected by population size and habitat quality, and whether any changes in population size over the past 10–20 years were related to past population size and habitat quality.Population size varied between 60 and 100.000 individuals and was highly positively related to shoot density. Larger (and denser) populations formed more flowers and fruits, but fewer seeds. Soil water content had a strong positive effect on seed production and seed mass, and the latter also increased with increasing soil phosphorus content. Relative light intensity showed a positive impact on shoot density and, hence, population size. Compared to British range centre populations, the populations at the German range margin formed more, but smaller seeds that failed to germinate both in the field and in laboratory experiments. Despite the lack of sexual reproduction, population sizes generally had not decreased during the past two decades, most likely due to successful clonal growth. The change in population size of Narthecium, however, was negatively related to the present soil phosphorus content, indicating that an increased supply of nutrients and a decrease in light availability may have a negative effect on population dynamics.The results imply that fragmented and small range-margin populations not necessarily are doomed to extinction, provided that the habitat quality remains suitable for growth and vegetative reproduction.  相似文献   

12.
Domestic herbivores often compete with wildlife for limited resources, and on longer time-scales, grazing may also increase or decrease coverage of important food plants to wildlife affecting the threshold density for when competition can be expected. In Norway, there are growing concerns about the effect of releasing 2.1 million domestic sheep (Ovis aries) for summer grazing into areas hosting wild populations of alpine reindeer (Rangifer tarandus). We quantified the effect of sheep grazing (0, 25 and 80 sheep/km2) on the development in coverage and abundance of plants known to be important in the diet of reindeer during summer (vascular plants) and winter (lichens) within a fully replicated, landscape scale (2.7 km2) experiment. From 2001 to 2005, the sedge, Carex bigelowii, increased while the herb Solidago virgaurea decreased in frequency at high density of sheep relative to controls (both marginally non-significant). There was no marked development in Deschampsia flexuosa, Salix herbacea or Hierarcium alpinum that could be related to sheep grazing intensity. Lichen coverage and height both decreased at high density of sheep from 2002 to 2005. Effects of low grazing intensity were closer to controls than to high grazing intensity. Our study highlights that high sheep grazing intensity induce changes to the plant community that, at the same time, can improve the summer habitat and detriment the winter habitat to reindeer. Many wild reindeer populations are fragmented and may thus be limited by either summer or winter range. The effect of sheep grazing is predicted to vary accordingly. However, currently, we have limited ability to quantify how much this explicitly means in terms of increased or reduced carrying capacity for reindeer.  相似文献   

13.
In small populations of plant species with separate sexes, it can be expected that besides the local environment also stochastic events influence population sex ratios. Biased sex ratios may in turn negatively affect genetic diversity due to increased genetic drift and, in clonal plants, due to reduced sexual reproductive output. Empirical evidence for these processes is scarce, however. We investigated the pattern of sex ratio variation and the distribution of genetic variation of the dioecious clonal forest herb Mercurialis perennis using AFLP markers. Analysis of molecular variance indicated a pronounced genetic structure. Overall within-population genetic diversity was moderate and local sex ratios were slightly male biased. The proportion of male to female plants in large populations slightly increased with increasing light penetration to the herb layer. Small populations, on the contrary, displayed high variability in sex ratios, unrelated to the local light environment. Genotypic diversity decreased with more male-biased sex ratios. We conclude that stochastic events related to small population size and the local forest environment, related to canopy closure, affect the proportion of female plants and indirectly influence local genotypic diversity, likely through the degree of sexual reproduction. This is one of the first studies to report a clear association between gender proportions and genetic diversity of a dioecious plant species in a fairly large survey.  相似文献   

14.
Prolonged clonal growth: escape route or route to extinction?   总被引:11,自引:0,他引:11  
Many plant species have the capability to reproduce sexually as well as clonally. The balance between clonal reproduction and sexual reproduction varies between different species. It was estimated that 66.5% of all central European flora may form independent but genetically identical daughter plants. Also within species there is great variation in the ratio clonal/sexual reproduction. Clonal reproduction can be considered as an alternative life cycle loop that allows persistence of a species in the absence of the ability to complete the normal life cycle (i.e. seed production, germination and recruitment). Plant populations exhibiting prolonged clonal growth have been referred to as 'remnant populations'. A remnant population in general is defined as "a population capable of persistence during extended time periods despite a negative population growth rate (λ<1) due to longlived life stages and life cycles, including loops, that allow population persistence without completion of the whole life cycle". Here we argue that prolonged and nearly exclusive clonal growth through environmental suppression of sexual reproduction can ultimately lead to local sexual extinction and to monoclonal populations of a species, and that this may imply significant consequences for population viability. Especially obligate or mainly outcrossing clonal plant species may be vulnerable for sexual extinction. We argue that the consequences of reduced sexual recruitment in clonally propagating plants may be understudied and underestimated and that a re-evaluation of current ideas on clonality may be necessary.  相似文献   

15.
Ecologists commonly use matrix models to study the population dynamics of plants. Most studies of plant demography use plot-based methods to collect data, in part, because mapped individuals are easier to relocate in subsequent surveys and survey methods can be standardized among sites. However, there is tremendous variation among studies, both in terms of plot arrangement and the total area sampled. In addition, there has been little discussion of how alternative sampling arrangements influence estimates of population growth rates (λ) calculated with matrix models. We surveyed the literature to determine what sampling designs are most used in studies of plant demography using matrix models. We then used simulations of three common sampling techniques—using a single randomly placed plot, multiple randomly placed plots, and systematically distributed plots—to evaluate how these alternative strategies influenced the precision of estimates of λ. These simulations were based on long-term demographic data collected on 13 populations of the Amazonian understory herb Heliconia acuminate (Heliconiaceae). We found that the method used to collect data did not affect the bias or precision of estimates in our system—a surprising result, since the advantage in efficiency that is gained from systematic sampling is a well-known result from sampling theory. Because the statistical advantage of systematic sampling is most evident when there is spatial structure in demographic vital rates, we attribute this result to the lack of spatially structured vital rates in our focal populations. Given the likelihood of spatial autocorrelation in most ecological systems, we advocate sampling with a systematic grid of plots in each study site, as well as that researchers ensure that enough area is sampled—both within and across sites—to encompass the range of spatial variation in plant survival, growth, and reproduction.  相似文献   

16.
Transition matrix models were used to examine the population dynamics in the facultative biennial Carum carvi L. in semi-natural grasslands, specifically to assess what life cycle stages are important for population development and to evaluate the effects of environmental stochasticity on population persistence and, hence, the ability to develop remnant populations. The demographic studies were conducted over a 4-year period in three moderately grazed grasslands that differed in onset and duration of grazing. Experimental seed-sowing was also conducted in disturbed and undisturbed plots in the populations. Deterministic and stochastic models yielded overall negative population growth (λ < 1) for the populations. λ was sensitive to transitions in the most frequent vegetative stage classes. Elasticity analysis indicated that a large proportion of population growth could be ascribed to the stasis of individuals in the largest vegetative stage class. Life-table response experiment (LTRE) analyses showed also that progression to larger stage classes was important in explaining the between-population variation in λ. The expected time to extinction was on the order of several decades for the study populations. Seed-sowing indicated that seedling establishment was limited by both seed and micro-site availability. The populations of C. carvi seem to be able to persist for a rather long time in moderately grazed semi-natural grasslands, even in cases where populations are destined to become extinct. The results, thus, indicate that “biennials” are able to maintain remnant populations in managed semi-natural grasslands.  相似文献   

17.
We examined the effects of intraspecific and interspecific competition on demographic processes in the perennial herb Sanicula europaea by manipulating the density of neighbouring plants. We followed the response in terms of survival, growth and reproduction and in terms of seedling recruitment. The demographic data from all phases of the life cycle enabled us to assess also the overall effects of treatments on population growth rate (λ) by transition matrix models. We also decomposed the differences in λ between control and treatments, using life table response experiments (LTRE). To study the effects of competition on recruitment in more detail and to evaluate the role of seed availability, we sowed seeds at different densities with or without vegetation removal.
Vegetative growth and flowering frequency of established individuals was not significantly affected by removal treatments, which suggest no, or a delayed response to released competition. Neighbour removal had no effect on seedling emergence but enhanced recruitment through a higher seedling survival. Conspecific and simultaneous conspecific and heterospecific removal of plants led to an increase in population growth rate (λ), whereas heterospecific removal alone led to a decrease. Emergence of seedlings and fate of vegetative established individuals contributed most to differences in λ between the control and the different treatments. Seed addition enhanced seedling emergence but, as seedling and juvenile survival were density dependent, densities of established individuals appear not to be seed limited.
In S. europaea removal treatments had different effects on established individuals and recruitment. This suggests that studies quantifying the effects of competition over the entire life cycle and performed in a natural environment are necessary to assess the importance of competition in perennial plant populations.  相似文献   

18.
We tested whether differences in ploidy level and previous exposure to herbivory can affect plant tolerance to herbivory. We conducted a common garden experiment with 12 populations of two ploidy levels of the perennial herb Cardamine pratensis (five populations of tetraploid ssp. pratensis and seven populations of octoploid ssp. paludosa). Earlier studies have shown that attack rates by the main herbivore, the orange tip butterfly Anthocharis cardamines, are lower in populations of octoploids than in populations of tetraploids, and vary among populations. In the common garden experiment, a combination of natural and artificial damage significantly reduced seed and flower production. We measured tolerance based on four plant-performance metrics: survival, growth, seed production and clonal reproduction. For three of these measurements, tolerance of damage did not differ between ploidy levels. For clonal reproduction, the octoploids had a higher tolerance than the tetraploids, although they experience lower herbivore attack rates in natural populations. Populations from sites with high levels of herbivory had higher tolerance, measured by seed production, than populations with low levels of herbivory. We did not detect any significant costs of tolerance. We conclude that high intensity of herbivory has selected for high tolerance measured by seed production in C. pratensis.  相似文献   

19.
Genetic diversity is often considered important for species that inhabit highly disturbed environments to allow for adaptation. Many variables affect levels of genetic variation; however, the two most influential variables are population size and type of reproduction. When analyzed separately, both small population size and asexual reproduction can lead to reductions in genetic variation, although the exact nature of which can be contrasting. Genetic variables such as allelic richness, heterozygosity, inbreeding coefficient, and population differentiation have opposite predictions depending upon the trait (rarity or clonality) examined. The goal of this study was to quantify genetic variation and population differentiation in a species that resides in a highly stochastic environment and is both rare and highly clonal, Spiraea virginiana, and to determine if one trait is more influential genetically than the other. From populations sampled throughout the natural range of S. virginiana, we used microsatellite loci to estimate overall genetic variation. We also calculated clonal structure within populations, which included genotypic richness, evenness, and diversity. Gene flow was investigated by quantifying the relationship between genetic and geographic distances, and population differentiation (θ) among populations. Observed heterozygosity, genotypic richness, and inbreeding coefficients were found to be representative of high clonal reproduction (averaging 0.505, 0.1, and –0.356, respectively) and the number of alleles within populations was low (range = 2.0–3.6), being more indicative of rarity. Population differentiation (θ) among populations was high (average = 0.302) and there was no relationship between genetic and geographic distances. By examining a species that exhibits two traits that both can lead to reduced genetic variation, we may find an enhanced urgency for conservation. Accurate demographic counts of clonal species are rarely, if ever, possible and genetic exploration for every species is not feasible. Therefore, the conclusions in this study can be potentially extrapolated to other riparian, clonal shrubs that share similar biology as S. virginiana.  相似文献   

20.
Although the ecology of many exotic invaders has been intensively examined in the novel range, few studies have comparatively explored how population dynamics differ in native and novel parts of an invading plants’ range. The population dynamics of mile-a-minute weed, Polygonum perfoliatum L., was explored in both the native (Japan) and novel (northeastern USA) portions of its range and evaluated using periodic matrix models. Projected per capita population growth rate (λ) varied within and between native and novel range populations. Surprisingly, five of the six populations in the novel range were projected to fail to replace themselves (λ<1) while only two of the four native range populations were projected to decline, although these projections had wider confidence intervals than in the novel habitat. While changes in germination, survivorship, fecundity and seed banking would have equivalent effects on population growth in the invasive habitat, small increases in plant survivorship would greatly increase λ in native populations. The differences between native and novel population growth rates were driven by lower adult survival in the native range caused by annual flooding and higher fecundity. Simulation analyses indicated that a 50% reduction in plant survival would be required to control growing populations in the novel range. Further comparative studies of other invading species in both their native and novel ranges are needed to examine whether the high per capita population growth and strong regulatory effects of adult survival in the native habitat are generally predictive of invasive behavior in novel habitats. Sachiko Araki: (Deceased)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号