首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.  相似文献   

2.
3.
Japanese chestnut (Castanea crenata Sieb. et Zucc.) has a long juvenile phase, so breeders have to wait many years to evaluate nut traits. Molecular markers associated with genes of interest would accelerate selection in chestnut breeding programs. We evaluated five nut traits (nut harvest date, nut weight, pericarp splitting, insect infestation, and specific gravity) in 99 Japanese chestnut cultivars and selections. A wide range of phenotypic variation was observed for each of the traits, suggesting that the collection harbored sufficient genetic diversity for breeding. A Bayesian genome-wide association study was conducted using 162 simple sequence repeat markers and 741 single nucleotide polymorphism markers. To evaluate the potential of marker-assisted selection, we examined 12 molecular markers found to be associated with nut traits: 4 for nut harvest date, 4 for nut weight, 1 for pericarp splitting, and 3 for insect infestation. The percentages of phenotypic variance explained ranged from 4.8 to 37.1%. Although insect infestation showed only medium heritability (0.672), we obtained two quantitative trait loci (QTLs) with extremely high posterior probabilities (0.93 and 1.00). Out of the 12 molecular markers, 3 of the 4 markers for nut harvest time could be validated in a breeding population. Accuracies of genomic selection were extremely high for nut harvest date (0.841) and moderate for insect infestation (0.604), suggesting that genomic selection based on Bayesian regression would reduce the cost of phenotypic evaluation of these traits and possibly others.  相似文献   

4.
Retrospective and perspective of rice breeding in China   总被引:1,自引:0,他引:1  
Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity.  相似文献   

5.
Molecular breeding (MB) increases genetic gain per crop cycle, stacks favourable alleles at target loci and reduces the number of selection cycles. In the last decade, the private sector has benefitted immensely from MB, which demonstrates its efficacy. In contrast, MB adoption is still limited in the public sector, and it is hardly used in developing countries. Major bottlenecks in these countries include shortage of well-trained personnel, inadequate high-throughput capacity, poor phenotyping infrastructure, lack of information systems or adapted analysis tools or simply resource-limited breeding programmes. The emerging virtual platforms aided by the information and communication technology revolution will help to overcome some of these limitations by providing breeders with better access to genomic resources, advanced laboratory services and robust analytical and data management tools. Apart from some advanced national agricultural research systems (NARS), the implementation of large-scale molecular breeding programmes in developing countries will take time. However, the exponential development of genomic resources, including for less-studied crops, the ever-decreasing cost of marker technologies and the emergence of platforms for accessing MB tools and support services, plus the increasing public–private partnerships and needs-driven demand for improved varieties to counter the global food crisis, are all grounds to predict that MB will have a significant impact on crop breeding in developing countries. These predictions are supported by some preliminary successful examples presented in this paper.  相似文献   

6.

Background  

The oil palm (Elaeis guineensis Jacq.) is a perennial monocotyledonous tropical crop species that is now the world's number one source of edible vegetable oil, and the richest dietary source of provitamin A. While new elite genotypes from traditional breeding programs provide steady yield increases, the long selection cycle (10-12 years) and the large areas required to cultivate oil palm make genetic improvement slow and labor intensive. Molecular breeding programs have the potential to make significant impacts on the rate of genetic improvement but the limited molecular resources, in particular the lack of molecular markers for agronomic traits of interest, restrict the application of molecular breeding schemes for oil palm.  相似文献   

7.
Markers are of interest to plant breeders as a source of genetic information on crops and for use in indirect selection of traits to which the markers are linked. In the classic breeding approach, the markers were invariably the visible morphological and other phenotypic characters, and the breeders expended considerable effort and time in refining the crosses as the tight linkage or association of the desired characters with the obvious phenotypic characters was never unequivocally established. Furthermore, indirect selection for a trait using such morphological markers was not practical due to (1) a paucity of suitable markers, (2) the undesirable pleiotropic effects of many morphological markers on plant phenotype, and (3) the inability to score multiple morphological mutant traits in a single segregating population. With the advancement in molecular biology, the use of molecular markers in plant breeding has become very commonplace and has given rise to “molecular breeding”. Molecular breeding involves primarily “gene tagging”, followed by “marker-assisted selection” of desired genes or genomes. Gene tagging refers to the identification of existing DNA or the introduction of new DNA that can function as a tag or label for the gene of interest. In order for the DNA sequences to be conserved as a tag, important prerequisites exist. This review also summarizes the achievements in gene tagging that have been made over the last 7 to 8 years.  相似文献   

8.
Development of nine polymorphic microsatellites from a genomic library of hybrid striped bass (female Morone chrysops × male Morone saxatilus) DNA is described. Breeding of hybrid striped bass for aquaculture is based largely on breeding wild fish. Molecular markers such as microsatellites will be useful tools for developing broodstock, estimating heritability for production traits, and selective breeding via marker‐assisted selection. The nine polymorphic microsatellites include six dinucleotide and three complex repeat motifs. The number of alleles detected among a sample of 10 individuals of each species was relatively low. All polymerase chain reaction primer pairs also amplified products in the sea bass Dicentrarchus labrax.  相似文献   

9.
10.

Background  

Chickpea is a major crop in many drier regions of the world where it is an important protein-rich food and an increasingly valuable traded commodity. The wild annual Cicer species are known to possess unique sources of resistance to pests and diseases, and tolerance to environmental stresses. However, there has been limited utilization of these wild species by chickpea breeding programs due to interspecific crossing barriers and deleterious linkage drag. Molecular genetic diversity analysis may help predict which accessions are most likely to produce fertile progeny when crossed with chickpea cultivars. While, trait-markers may provide an effective tool for breaking linkage drag. Although SSR markers are the assay of choice for marker-assisted selection of specific traits in conventional breeding populations, they may not provide reliable estimates of interspecific diversity, and may lose selective power in backcross programs based on interspecific introgressions. Thus, we have pursued the development of gene-based markers to resolve these problems and to provide candidate gene markers for QTL mapping of important agronomic traits.  相似文献   

11.
12.
Single nucleotide polymorphism (SNP) markers are increasingly being used in crop breeding programs, slowly replacing simple sequence repeats (SSR) and other markers. SNPs provide many benefits over SSRs, including ease of analysis and unambiguous results across various platforms. We have identified and mapped SNP markers in the tropical tree crop Theobroma cacao, and here we compare SNPs to SSRs for the purpose of determining off-types in clonal collections. Clones are used as parents in breeding programs and the presence of mislabeled clones (off-types) can lead to the propagation of undesired traits and limit genetic gain from selection. Screening was performed on 186 trees representing 19 Theobroma cacao clones from the Institute of Agricultural Research for Development (IRAD) breeding program in Cameroon. Our objectives were to determine the correct clone genotypes and off-types using both SSR and SNP markers. SSR markers that amplify 11 highly polymorphic loci from six linkage groups and 13 SNP markers that amplify eight loci from seven linkage groups were used to genotype the 186 trees and the results from the two different marker types were compared. The SNP assay identified 98% of the off-types found via SSR screening. SNP markers spread across multiple linkage groups may serve as a more cost-effective and reliable method for off-type identification, especially in cacao-producing countries where the equipment necessary for SSR analysis may not be available.  相似文献   

13.
Traditional plant breeding relies upon crosses and subsequent selection of genotypes to meet desirable traits. The incorporation of marker-assisted selection into breeding strategies would result in a reduction in the number of offspring to be propagated, selected and tested. In the case of pea (Pisum sativum L.), the testing of resistance to viral pathogens such as pea seed-borne mosaic virus (PSbMV) is included in the breeding process. Resistance to the common strains of PSbMV is conferred by a single recessive gene (eIF4E), localized on LG VI (sbm-1 locus). We have analyzed for variation in the eIF4E genomic sequences from 43 pea varieties and breeding lines, reported as donors of resistance. This enabled a comprehensive investigation of the eIF4E gene structure and mutations responsible for PSbMV resistance were identified. Subsequently, PCR-based and gene-specific single nucleotide polymorphism and co-dominant amplicon length polymorphism markers were developed. All together 60 accessions were analyzed using sequence data and/or allele specific DNA markers. Developed allele specific markers were reproducibly amplified across a broad spectra of pea varieties and breeding lines. These were found to be 100% accurate in detecting the presence of the respective alleles when compared to symptomology and ELISA, testing (74% reliable). Hence, these molecular markers will substantially speed-up PSbMV diagnosis and resistance breeding processes in pea.  相似文献   

14.
Fungi of the genus Pleurotus, in particular, species Pleurotus ostreatus (common oyster mushroom) are among most cultivated fungi in the world. Due to intense rates of development of studies in this field, efficient breeding programs are highly required in the search for new P. ostreatus strains. The principal traits used worldwide for selecting strains are intensity of fruitbearing, fruit body cap color (for some consumptive markets), and mycelium growth rate. In this connection, the objective of this work was to study these quantitative traits and to find molecular markers, which could be employed to accomplish breeding programs. In general, we found 12 genomic loci (quantitative trait loci, QTLs) controlling mycelium growth rate of oyster and six QTLs responsible for the fruit body cap color. The genetic map of P. ostreatus was constructed, and all markers of quantitative traits found by us were located on this genetic map. The obtained linkage map can be a useful tool for the accomplishment of breeding programs to improve economically important traits of oyster mushroom.  相似文献   

15.
作物抗旱相关分子标记及其辅助选择的研究进展   总被引:11,自引:0,他引:11  
分子标记辅助选择育种给作物抗旱育种提供了新的途径。本介绍了国内外在小麦、玉米、水稻、大豆等重要农作物抗旱相关分子标记方面的研究进展。对作物抗旱相关QTL分子标记辅助育种进行了探讨,并对其发展策略提出了一些思考。  相似文献   

16.
Molecular marker-assisted breeding options for maize improvement in Asia   总被引:2,自引:0,他引:2  
Maize is one of the most important food and feed crops in Asia, and is a source of income for several million farmers. Despite impressive progress made in the last few decades through conventional breeding in the “Asia-7” (China, India, Indonesia, Nepal, Philippines, Thailand, and Vietnam), average maize yields remain low and the demand is expected to increasingly exceed the production in the coming years. Molecular marker-assisted breeding is accelerating yield gains in USA and elsewhere, and offers tremendous potential for enhancing the productivity and value of Asian maize germplasm. We discuss the importance of such efforts in meeting the growing demand for maize in Asia, and provide examples of the recent use of molecular markers with respect to (i) DNA fingerprinting and genetic diversity analysis of maize germplasm (inbreds and landraces/OPVs), (ii) QTL analysis of important biotic and abiotic stresses, and (iii) marker-assisted selection (MAS) for maize improvement. We also highlight the constraints faced by research institutions wishing to adopt the available and emerging molecular technologies, and conclude that innovative models for resource-pooling and intellectual-property-respecting partnerships will be required for enhancing the level and scope of molecular marker-assisted breeding for maize improvement in Asia. Scientists must ensure that the tools of molecular marker-assisted breeding are focused on developing commercially viable cultivars, improved to ameliorate the most important constraints to maize production in Asia.  相似文献   

17.
Molecular breeding in sesame is still at infancy due to limited number of microsatellite markers available and the low level of polymorphism exhibited by them. Therefore, whole genome sequencing was used for development of microsatellite markers so as to ensure availability of substantial number of polymorphic markers for use in marker assisted breeding programs. Whole genome sequencing of sesame variety ‘Swetha’ was done using Illumina paired-end sequencing and Roche 454 shotgun sequencing technologies (GCA_000975565.1 in GenBank). ‘GinMicrosatDb’, a genome-wide microsatellite marker database has been developed using the whole genome sequence data of sesame variety ‘Swetha’. The database consists of microsatellites localized on both linkage groups and scaffolds with their genomic co-ordinates. It provides five sets of forward and reverse primers for each of the microsatellite loci along with the flanking sequences, primer GC content, product size and melting temperature etc. The distribution of microsatellites can be viewed and selected through a genome browser as well as through a physical map. The newly identified microsatellite markers are expected to help sesame breeders in developing marker tags for traits of economic importance thereby bringing about greater efficiency in marker-assisted selection programs.  相似文献   

18.
Whole-genome strategies for marker-assisted plant breeding   总被引:3,自引:0,他引:3  
Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing and genome-wide molecular markers to effectively address various genomic and environmental factors through a representative or complete set of genetic resources and breeding materials. These strategies are now increasingly based on understanding of specific genomic regions, genes/alleles, haplotypes, linkage disequilibrium (LD) block(s), gene networks and their contribution to specific phenotypes. Large-scale and high-density genotyping and genome-wide selection are two important components of these strategies. As components of whole-genome strategies, molecular breeding platforms and methodologies should be backed up by high throughput and precision phenotyping and e-typing (environmental assay) with strong support systems such as breeding informatics and decision support tools. Some basic strategies are discussed in this article, including (1) seed DNA-based genotyping for simplifying marker-assisted selection (MAS), reducing breeding cost and increasing scale and efficiency, (2) selective genotyping and phenotyping, combined with pooled DNA analysis, for capturing the most important contributing factors, (3) flexible genotyping systems, such as genotyping by sequencing and arraying, refined for different selection methods including MAS, marker-assisted recurrent selection and genomic selection (GS), (4) marker-trait association analysis using joint linkage and LD mapping, and (5) sequence-based strategies for marker development, allele mining, gene discovery and molecular breeding.  相似文献   

19.
Improved management and use of estimated breeding values in breeding programmes, have resulted in rapid genetic progress for small ruminants (SR) in Europe and other developed countries. The development of single nucleotide polymorphisms chips opened opportunities for genomic selection (GS) in SR in these countries. Initially focused on production traits (growth and milk), GS has been extended to functional traits (reproductive performance, disease resistance and meat quality). The GS systems have been characterized by smaller reference populations compared with those of dairy cattle and consisting mostly of cross- or multi-breed populations. Molecular information has resulted in gains in accuracy of between 0.05 and 0.27 and proved useful in parentage verification and the identification of QTLs for economically important traits. Except for a few established breeds with some degree of infrastructure, the basic building blocks to support conventional breeding programmes in small holder systems are lacking in most developing countries. In these systems, molecular data could offer quick wins in undertaking parentage verification and genetic evaluations using G matrix, and determination of breed composition. The development of next-generation molecular tools has prompted investigations on genome-wide signatures of selection for mainly adaptive and reproduction traits in SR in developing countries. Here, the relevance of the developments and application of GS and other molecular tools in developed countries to developing countries context is examined. Worth noting is that in the latter, the application of GS in SR will not be a ‘one-size fits all’ scenario. For breeds with some degree of conventional genetic improvement, classical GS may be feasible. In small holder systems, where production is key, community-based breeding programmes can provide the framework to implement GS. However, in fragile growth systems, for example those found in marginal environments, innovative GS to maximize adaptive diversity will be required. A cost-benefit analysis should accompany any strategy of implementing GS in these systems.  相似文献   

20.
Molecular markers and molecular genetic maps are prerequisites for molecular breeding in any plant species. A comprehensive genetic linkage map for cultivated Porphyra haitanensis T. J. Chang et B. F. Zheng has not yet been developed. In this study, 157 double haploid (DH) lines [derived from a YSIII (wildtype) × RTPM (red‐type artificial pigmentation mutant) cross] were used as a mapping population in P. haitanensis. A total of 60 pairs of sequence‐related amplified polymorphism (SRAP) primers and 39 pairs of simple sequence repeat (SSR) primers were used to detect polymorphisms between the two parents. Fifteen SRAP and 16 SSR polymorphic primer pairs were selected to analyze the DH population. A linkage genetic map comprising 67 SRAP markers and 20 SSR markers in five linkage groups, with a total length of 830.6 cM and an average of 10.13 cM between markers, was constructed. The markers were distributed evenly in all linkage groups without clustering. The linkage groups comprised 12–23 markers ranging in length from 134.2 to 197.3 cM. The estimated genome length of P. haitanensis was 942.4 cM, with 88.1% coverage. This is the first report of a comprehensive genetic map in P. haitanensis. The map presented here will provide a basis for the development of high‐density genetic linkage maps and lay the foundation for molecular breeding work in P. haitanensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号