首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigated the effect of 5-HT receptor antagonists on mechanical hyperalgesia observed in a neuropathic pain rat model prepared by chronic constriction injury of the sciatic nerve. NAN-190, a 5-HT 1A receptor antagonist, (-)-pindolol, a 5-HT 1A/1B receptor antagonist, and tropisetron, a 5-HT(3/4) receptor antagonist, did not affect the pain threshold in the hyperalgesic hind limb to the same extent as in the normal hind limb. However, sarpogrelate and ketanserin, 5-HT 2A receptor antagonists, significantly elevated the pain threshold in the hyperalgesic hind limb, but not in the normal hind limb. In spite of its high affinity for the 5-HT 2A receptor, methysergide only slightly elevated the pain threshold in the hyperalgesic hind limb. Pre-treatment with methysergide significantly antagonized the inhibitory effect of sarpogrelate on hyperalgesia. Furthermore, the 5-HT 2A receptor specific binding activity of 3H-ketanserin determined for the hyperalgesic hind limb did not differ from that of the normal hind limb. From these results, we propose that the 5-HT 2A receptor in the hyperalgesic hind paw function as an agonist-independent active receptor following constriction of the sciatic nerve, and that sarpogrelate and ketanserin act as inverse agonists of this receptor and suppress its activation. Methysergide may act as a neutral antagonist that blocks the effect of inverse agonists on the 5-HT 2A receptor.  相似文献   

2.
In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, attenuated inflammatory hyperalgesia in rats. Using the plantar test in rats with carrageenan-induced paw inflammation, we investigated the possible mechanism(s) of this effect. Because i.t. oxytocin was reported to produce a dose-dependent anti-hyperalgesia in rats with inflammation, we speculate that there is a possible correlation between oxytocin-induced and Ang IV-induced anti-hyperalgesia. Using i.t. co-administered atosiban (oxytocin receptor antagonist), the anti-hyperalgesia by Ang IV was completely abolished. This indicated that oxytocin could be the major IRAP substrate responsible for the anti-hyperalgesia by Ang IV. When Ang IV was co-administered with a low dose of oxytocin, there was a significant enhancing effect of Ang IV on oxytocin-induced anti-hyperalgesia. In recent reports, electrical stimulation on the paraventricular hypothalamic nucleus (PVN) was proved to increase oxytocin release at the spinal cord. Our results also showed that Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. Moreover, we examined the local effect of intraplantarly injected Ang IV in the same model. Our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not regulate the peripheral inflammatory process. Overall, our study suggests that Ang IV may act through the inhibition of the activity of IRAP to reduce the degradation of oxytocin at the spinal cord, thereby leading to anti-hyperalgesia in rats with inflammation.  相似文献   

3.
Daher JB  de Melo MD  Tonussi CR 《Life sciences》2005,76(20):2349-2359
We investigated the effect of serotonergic agonists and antagonists injected intrathecally by direct punction of the spinal cord at the lumbar level (between L5-L6) on peripheral inflammatory edema. Edema was induced by carrageenan injected subcutaneously in one hindpaw 30 min after spinal treatments. Serotonin (0.1, 1, 10 pmol) caused a graded-inhibition of the inflammatory paw edema. The corticosteroid inhibitor aminoglutethimide (100 mg/kg, p.o. 1.5 h before spinal treatment) did not modify this effect. The 5-HT1A agonist buspirone and the 5-HT1B/1D agonist sumatriptan (0.1, 1.0 and 10 nmol) also inhibited paw edema. The 5-HT1,2 antagonist methysergide (10 and 100 pmol) enhanced edema, but higher doses ( 4 and 8 nmol) diminished edema. NAN-190 (5-HT1 antagonist; 1 and 10 nmol) increased paw edema, while ritanserin (5-HT2 antagonist; 1 nmol) inhibited paw edema. Ondansetron (5-HT3 antagonist; up to 10 nmol) did not affect edema, but metoclopramide (5-HT3 antagonist / 5-HT4 agonist; 5, 10 and 30 pmol) inhibited edema. These data suggest that a tonic release of serotonin in the spinal cord may occurs during ongoing peripheral inflammation, modulating the neurogenic component of edema either by an inhibitory action on 5-HT1 receptors or by a stimulatory action on 5-HT2 receptors. A disfunction in such mechanism may be involved in the pathophysiology of certain types of headaches or migraine, which seem to depend on neurogenic vasodilation, and may also help to explain the therapeuthic effectiveness of some serotonergic agents in these conditions.  相似文献   

4.
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. ERK5 antisense, but not mismatch, oligodeoxynucleotide decreased the activation of ERK5 and suppressed inflammation-induced heat and cold hyperalgesia. Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.  相似文献   

5.
The purpose of this study was to determine whether the 5-hydroxytryptamine7 (5-HT7) receptor is expressed by nociceptor-like neurons in the rat PNS and whether 5-HT activates these nociceptors via the 5-HT7 receptor subtype. Using a polyclonal antibody and the method of immunofluorescence staining, we demonstrated that the 5-HT7 receptor appears predominately on "nociceptor-like" neurons of the rat lumbar dorsal root ganglia. Using immunocytochemical methods, we showed that the immunoreactivity of the 5-HT7 receptor antibody complex is localized in the superficial layers of the spinal cord dorsal horn, which corresponds with laminae I, IIouter and IIinner. Furthermore, we demonstrated that noxious stimulation produced by knee injection of 5-HT or a 5-HT7 agonist dose-dependently increases c-Fos production of the rat spinal cord dorsal horn. This effect was significantly inhibited by the preinjection of a 5-HT7 antagonist. We conclude that the 5-HT7 receptor is expressed by rat primary afferent nociceptors which terminate in the superficial layers of the spinal cord dorsal horn and that the 5-HT7 receptor subtype is involved in nociceptor activation by 5-HT.  相似文献   

6.
Increasing evidence supports that acupuncture intervention is an effective approach for intraoperative and postoperative pain. Neuron–microglia crosstalk, mediated by the purinergic P2X7 receptor (R)/fractalkine/CX3CR1 cascade in the spinal cord dorsal horn, plays a pivotal role in pain processing. However, its involvement in the analgesic effect of electroacupuncture (EA) remains unclear. In this study, a rat neck-incision pain model was established by making a longitudinal incision along the midline of the neck and subsequent repeated mechanical stimulation. EA stimulation was applied to bilateral LI18, LI4-PC6, or ST36-GB34. The thermal pain threshold, cervicospinal ATP concentration, expression levels of purinergic P2XR and P2YR subunits mRNAs, and fractalkine, CX3CR1 and p38 MAPK proteins, were detected separately. The neck incision induced strong thermal hyperalgesia and upregulation of spinal ATP within 48 h. No significant change was found in thermal hyperalgesia after a single session of EA intervention. However, a single session of EA dramatically enhanced the neck incision-induced upregulation of ATP and upregulated the expression of P2X7R, which was reversed by two sessions of EA. Two sessions of EA at bilateral LI18 or LI4-PC6 attenuated hyperalgesia significantly, accompanied with downregulation of P2X7R/fractalkine/ CX3CR1 signaling after three sessions of EA. EA stimulation of LI18 or LI4-PC6 alleviates thermal hyperalgesia in neck-incision pain rats, which may be associated with its effects in regulating the neck incision-induced increase of ATP and P2X7R and subsequently suppressing fractalkine/CX3CR1 signaling in the cervical spinal cord.  相似文献   

7.
Fei  Xueyu  He  Xiaofen  Tai  Zhaoxia  Wang  Hanzhi  Qu  Siying  Chen  Luhang  Hu  Qunqi  Fang  Jianqiao  Jiang  Yongliang 《Purinergic signalling》2020,16(4):491-502

Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats’ body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA’s analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.

  相似文献   

8.
Cheng BC  Tao PL  Cheng YY  Huang EY 《Peptides》2012,36(1):9-16
Hemorphins, a family of atypical endogenous opioid peptides, are produced by the cleavage of hemoglobin β-chain. Hemorphins were proved to bind to the μ-opioid receptors (agonist) and angiotensin IV receptors (insulin-regulated aminopeptidase; IRAP) (inhibitor). Among the hemorphins, LVV-hemorphin-7 (LVV-H7) was found to be abundant and with a longer half life in the CNS. Using intrathecal and intracerebroventricular injections, LVV-H7 and angiotensin IV were given to the rats, which were then subjected to the plantar test and the tail-flick test. Our results showed that LVV-H7 attenuated carrageenan-induced hyperalgesia at the spinal level, which could not be reversed by the co-administration of naloxone. At the supraspinal level, LVV-H7 also produced a significant anti-hyperalgesia effect but with a lower extent. Angiotensin IV showed a similar anti-hyperalgesia effect at the spinal level, but had no effect at the supraspinal level. In the tail-flick test and paw edema test, both peptides showed no effect. These results suggest that LVV-H7 mainly exert the anti-hyperalgesia effect at the spinal level, possibly through IRAP but not μ-opioid receptors. In addition, we observed the expression of IRAP in the CNS of animals with/without carrageenan-induced hyperalgesia. Our results showed a significant expression of IRAP in the spinal cord of rats. However, there was no significant quantitative change of IRAP after the development of hyperalgesia. The serum level of LVV-H7 was also found to be with no change caused by hyperalgesia. These results indicated that the endogenous LVV-H7 and IRAP may not regulate the severity of hyperalgesia through a quantitative change.  相似文献   

9.
Svensson CI  Tran TK  Fitzsimmons B  Yaksh TL  Hua XY 《FEBS letters》2006,580(28-29):6629-6634
Serotonin (5-HT) derived from bulbo-spinal projection is released by nociceptive input into the spinal dorsal horn. Here we report that formalin injection in the paw produced pain behavior (flinching) and phosphorylation of spinal ERK1/2 (P-ERK1/2, indicating activation) in rats. Depletion of spinal 5-HT by intrathecal (IT) 5,7-DHT, a serotonergic neurotoxin, profoundly reduced formalin evoked flinching and the increase in P-ERK1/2. Ondansetron (a 5-HT3 receptor antagonist) at IT doses that inhibited flinching also attenuated spinal ERK activation. These findings reveal that primary afferent-evoked activation of spinal ERK requires the input from an excitatory 5-HT descending pathway.  相似文献   

10.
Luo H  Xu IS  Chen Y  Yang F  Yu L  Li GX  Liu FY  Xing GG  Shi YS  Li T  Han JS  Wan Y 《Neurochemical research》2008,33(10):2151-2158
We previously reported that vanilloid receptor type 1 (VR1, or TRPV1) was up-regulated in dorsal root ganglion (DRG) and the spinal dorsal horn after chronic inflammatory pain produced by complete Freund’s adjuvant (CFA) injection into the plantar of rat hind paw. In the present study, we found that subcutaneous or intrathecal application of capsazepine (CPZ), a TRPV1 competitive antagonist, could inhibit thermal hyperalgesia on day 1 and on day 14 but not on day 28 after CFA injection. With extracellular electrophysiological recording, the effect of CPZ on noxious electrical or heat stimulation evoked responses of wide dynamic range (WDR) neurons in the deep layers of the spinal dorsal horn was evaluated. Under noxious electrical stimulation to sciatic nerve, CPZ applied to the spinal cord produced an inhibition on Aδ- and C-fiber evoked responses of WDR neurons on day 1 and 14, but not on day 28. Under radiant heat stimulation to the receptive field skin, subcutaneous application of CPZ significantly inhibited the background activity and extended the response latency of WDR neurons on day 14. These results provide new evidence for the functional significance of TRPV1 at the early stage, but not the late stage, in the rat model of CFA-induced inflammatory pain. Special issue article in honor of Dr. Ji-Sheng Han. Hao Luo, Isabella Shi Xu, Yi Chen are Co-first authors.  相似文献   

11.
ABSTRACT: BACKGROUND: 5-hydroxytryptamine (5-HT) is one of the major neurotransmitters widely distributed in the CNS. Several 5-HT receptor subtypes have been identified in the spinal dorsal horn which act on both pre- and postsynaptic sites of excitatory and inhibitory neurons. However, the receptor subtypes and sites of actions as well as underlying mechanism are not clarified rigorously. Several electrophysiological studies have been performed to investigate the effects of 5-HT on excitatory transmission in substantia gelatinosa (SG) of the spinal cord. In the present study, to understand the effects of 5-HT on the inhibitory synaptic transmission and to identify receptor subtypes, the blind whole cell recordings were performed from SG neurons of rat spinal cord slices. RESULTS: Bath applied 5-HT (50 microM) increased the frequency but not amplitudes of spontaneous inhibitory postsynaptic currents (sIPSCs) in 58% of neurons, and both amplitude and frequency in 23 % of neurons. The frequencies of GABAergic and glycinergic mIPSCs were both enhanced. TTX (0.5 microM) had no effect on the increasing frequency, while the enhancement of amplitude of IPSCs was eliminated. Evoked-IPSCs (eIPSCs) induced by focal stimulation near the recording neurons in the presence of CNQX and APV were enhanced in both amplitude by 5-HT. In the presence of Ba2+ (1 mM), a potassium channel blocker, 5-HT had no effect on both frequency and amplitude. A 5-HT2Areceptor agonist, TCB-2 mimicked the 5-HT effect, and ketanserin, an antagonist of 5-HT2A receptor, inhibited the effect of 5-HT partially and TCB-2 almost completely. A 5-HT2C receptor agonist WAY 161503 mimicked the 5-HT effect and this effect was blocked by a 5-HT2C receptor antagonist, N-desmethylclozapine. The amplitude of sIPSCs were unaffected by both agonists. A 5-HT3 receptor agonist mCPBG enhanced both amplitude and frequency of sIPSCs. This effect was blocked by a 5-HT3 receptor antagonist ICS-205,930. The perfusion of 5-HT2B receptor agonist had no effect on sIPSCs. CONCLUSIONS: Our results demonstrated that 5-HT modulated the inhibitory transmission in SG by the activation of 5-HT2A and 5-HT2C receptors subtypes located predominantly at inhibitory interneuron terminals, and 5-HT3 receptors located at inhibitory interneuron terminals and soma-dendrites, consequently enhanced both frequency and amplitude.  相似文献   

12.
Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H2O2 is the major player. However, molecular mechanism of H2O2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H2O2-induced hyperalgesia in rats. Intraplantar injection of H2O2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20?min of H2O2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24?h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H2O2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H2O2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.  相似文献   

13.
Treatment of newborn rats with capsaicin is known to result in a permanent deficit of unmyelinated afferent neurones. The present study was concerned with the effect of neonatal capsaicin (50 mg kg?1 s.c.) on tissue concentrations of histamine and 5-hydroxytryptamine (5-HT) in the adult rat. The amines were determined at the age of 5 to 6 months using high performance liquid chromatography. Histamine and 5-HT concentrations were significantly increased in the dorsal skin of the hind paw and the dorsal spinal cord. Histamine concentrations were also increased in lungs and ventral spinal cord while 5-HT concentrations were unaltered in these tissues. Both histamine and 5-HT concentrations were unchanged in the ventral skin of the hind paw, gastrointestinal tract and brain. It is proposed that the changes in the amine concentrations reflect a secondary response of histamine and 5-HT containing mast cells and neurones to the irreversible degeneration of unmyelinated afferent neurones caused by neonatal capsaicin treatment.  相似文献   

14.
MK—801降低炎性痛在鼠脊髓NOS表达和NO含量   总被引:15,自引:2,他引:13  
Zeng JB  Li WB  Li QJ  Chen XL  Zhou AM  Ling YL 《生理学报》2001,53(1):55-60
用NADPH-d组织化学法,观察鞘内注射NMDA受体拮抗剂MK-801对大鼠右后掌皮下注射甲醛诱发的炎症性痛及痛过敏过程中脊髓后角一氧化氮合酶(NOS)表达的影响,同时测定一氧化氮(NO)代谢终产物  相似文献   

15.
Zhang Y  Meng X  Li A  Xin J  Berman BM  Lao L  Tan M  Ren K  Zhang RX 《Neurochemical research》2011,36(11):2104-2110
Although studies demonstrate that electroacupuncture (EA) alleviates the sensory dimension of pain, they have not addressed EA’s effect on the affective dimension. An inflammatory pain rat model, produced by a complete Freund adjuvant (CFA) injection into the hind paw, was combined with a conditioned place avoidance test to determine EA’s effects and its underpinning mechanism on the affective dimension of pain. CFA-injected rats showed place aversion, i.e. the affective dimension of pain, by spending less time in a pain-paired compartment after conditioning than before, while saline-injected rats did not. CFA rats given EA treatment at GB30 before a post-conditioning test showed no aversion to the pain-paired compartment, indicating that EA inhibited the affective response. Intra-rostral anterior cingulate cortex (rACC) administration of a κ-, but not μ-opioid receptor antagonist, blocked EA action. These data demonstrate that EA activates opioid receptors in the rACC to inhibit the affective dimension of pain.  相似文献   

16.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

17.
Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP) because of Fmr1 gene silencing. Serotonin (5-HT) is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR) is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.  相似文献   

18.
Capsaicin, the pungent component of hot peppers, and the venom of the spider Phoneutria nigriventer are able to activate sensory nerves resulting in cutaneous neurogenic plasma extravasation. This study was undertaken to compare the ability of these substances to evoke oedema in the rat hind-paw and mechanisms underlying this effect. Subplantar injection of either Phoneutria nigriventer venom (PNV; 1-100 microg/paw) or capsaicin (10-200 microg/paw) caused a significant paw oedema that was potentiated by CGRP (10 pmol/paw). In rats treated neonatally with capsaicin to deplete neuropeptides, the paw oedema induced by either PNV (100 microg/paw) or capsaicin (100 microg/paw) was partially reduced (P<0.05). The tachykinin NK1 receptor antagonist SR140333 (0.2 micromol/kg; i.v.) prevented the paw oedema induced by the tachykinin NK1 receptor agonist GR73632 (30 pmol/paw) and partially reduced paw oedema induced by PNV or capsaicin. Treatment of rats with compound 48/80 (5 mg/kg; s.c. 3 days) or with both H1 receptor antagonist (mepyramine; 1 nmol/paw) and 5-HT receptor antagonist (methysergide; 1 nmol/paw) significantly inhibited PNV- or capsaicin-induced paw oedema. The combined treatment with mepyramine and methysergide and SR140333 further reduced PNV- and capsaicin-induced paw oedema. The bradykinin B2 receptor antagonist Hoe 140 affected neither PNV- nor capsaicin-induced responses. Our results suggest that PNV and capsaicin each induce paw oedema that is partially mediated by activation of sensory fibers culminating in the release of substance P as well as by activation of mast cells which in turn release amines such as histamine and 5-HT.  相似文献   

19.
强电针穴位对背角神经元镇痛效应广泛性的中枢机制   总被引:18,自引:0,他引:18  
何晓玲  刘乡 《生理学报》1995,47(6):605-609
实验用雄性大鼠,玻璃微电极细胞外记录T12-L1脊髓背角会聚神经元对后爪伤害性刺激的反应,观察到低强度(2V)电针作用于与痛源接近的“足三里”穴对背角神经元的伤害性反应有明显的抑制作用,而远隔穴位“下关”穴则无效。而当采用超过C类纤维阈值18V电针时,则远隔穴位“下关”也有明显的镇痛作用。表现为强电针穴位镇痛作用的广泛性。而损毁NRM后,强电针(18V)远节段“下关”穴的镇痛作用消失,而近节段“足  相似文献   

20.
Roxindole, a DA D2 receptor agonist (2-16 mg/kg) produced dose-dependent increase in percentage antinociception. The effect which was blocked by DA D2 antagonist (-)sulpiride (50 mg/kg) and 5-HT1A receptor antagonist (-) pindolol (5 mg/kg). Roxindole (4 and 8 mg/kg) reversed both naloxone (20 mg/kg)-induced hyperalgesia and reserpine (2 mg/kg)-induced hyperalgesia. This reversal was sensitive to blockade by both (-)sulpiride (50 mg/kg) and (-) pindolol (5 mg/kg). The present study suggests that roxindole-induced antinociception is mediated by postsynaptic DA D2 and 5-HT1A receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号