首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene-editing nucleases enable targeted modification of DNA sequences in living cells, thereby facilitating efficient knockout and precise editing of endogenous loci. Engineered nucleases also have the potential to introduce mutations at off-target sites of action. Such unintended alterations can confound interpretation of experiments and can have implications for development of therapeutic applications. Recently, two improved methods for identifying the off-target effects of zinc finger nucleases (ZFNs) were described–one using an in vitro cleavage site selection method and the other exploiting the insertion of integration-defective lentiviruses into nuclease-induced double-stranded DNA breaks. However, application of these two methods to a ZFN pair targeted to the human CCR5 gene led to identification of largely non-overlapping off-target sites, raising the possibility that additional off-target sites might exist. Here, we show that in silico abstraction of ZFN cleavage profiles obtained from in vitro cleavage site selections can greatly enhance the ability to identify potential off-target sites in human cells. Our improved method should enable more comprehensive profiling of ZFN specificities.  相似文献   

2.
3.
The limited number of naturally occurring rare-cutting restriction enzymes and the slow and tedious engineering of existing restriction enzymes for novel specificities have prompted the design of new strategies for the development of restriction enzymes with specificities for long DNA sequences. One possibility is using zinc finger nucleases (ZFNs)—synthetic restriction enzymes that are custom-designed to target and cleave long DNA sequences and which have been recently shown useful for DNA cloning. Here we report on the purification and biochemical analysis of ZFN-10, a custom-made ZFN. We show that Ni-affinity and gel-filtration purification methods are sufficient to produce a cloning-grade enzyme. We show that ZFN-10 can function as an accurate and reliable ZFN using the same reagents and protocols used for naturally occurring and commercially available recombinant restriction enzymes. We also show that ZFN-10 tolerates a set of target-site substitutions which can be predicted from the specificities of recognition helices incorporated into the structure of its DNA-binding domain. The relative simplicity of ZFN-10 design, expression, purification and analysis suggests that novel ZFNs can potentially be designed and applied for various recombinant DNA applications.  相似文献   

4.
Zinc finger nucleases (ZFNs) have been used to direct precise modifications of the genetic information in living cells at high efficiency. An important consideration in the design of ZFNs is the number of zinc fingers that are required for efficient and specific cleavage. We examined dimeric ZFNs composed of [1]+[1], [2]+[2], [3]+[3], [4]+[4], [5]+[5], and [6]+[6] zinc fingers, targeting 6, 12, 18, 24, 30, and 36 bp, respectively. We found that [1]+[1] and [2]+[2] fingers supported neither in vitro cleavage nor single-strand annealing in a cell-based recombination assay. An optimal ZFN activity was observed for [3]+[3] and [4]+[4] fingers. Surprisingly, [5]+[5] and [6]+[6] fingers exhibited significantly reduced activity. While the extra fingers were not found to dramatically increase toxicity, directly inhibit recombination, or perturb the ZFN target site, we demonstrate the ability of subsets of three fingers in six-finger arrays to bind independently to regions of the target site, possibly explaining the decrease in activity. These results have important implications for the design of new ZFNs, as they show that in some cases an excess of fingers may actually negatively affect the performance of engineered multifinger proteins. Maximal ZFN activity will require an optimization of both DNA binding affinity and specificity.  相似文献   

5.
We previously developed a novel type of zinc finger nucleases (ZFNs), sandwiched ZFNs that can discriminate DNA substrates from cleavage products and thus cleave DNA much more efficiently than conventional ZFNs as well as perform with multiple turnovers like restriction endonucleases. In the present study, we used the sandwiched ZFN to unidirectionally clone exogenous genes into target vectors by cleaving heterogeneous sites that contained heterogeneous spacer DNAs between two zinc-finger protein binding sites with a single sandwiched ZFN. We demonstrated that the sandwiched ZFN cleaved a 40-fold excess of both insert and vector plasmids within 1 h and confirmed by sequencing that the resulting recombinants harbored the inserted DNA fragment in the desired orientation. Because sandwiched ZFNs can recognize and cleave a variety of long (?26-bp) target DNAs, they may not only expand the utility of ZFNs for construction of recombinant plasmids, but also serve as useful meganucleases for synthesis of artificial genomes.  相似文献   

6.
7.
Mammalian cells with multi‐gene knockouts could be of considerable utility in research, drug discovery, and cell‐based therapeutics. However, existing methods for targeted gene deletion require sequential rounds of homologous recombination and drug selection to isolate rare desired events—a process sufficiently laborious to limit application to individual loci. Here we present a solution to this problem. Firstly, we report the development of zinc‐finger nucleases (ZFNs) targeted to cleave three independent genes with known null phenotypes. Mammalian cells exposed to each ZFN pair in turn resulted in the generation of cell lines harboring single, double, and triple gene knockouts, that is, the successful disruption of two, four, and six alleles. All three biallelic knockout events were obtained at frequencies of >1% without the use of selection, displayed the expected knockout phenotype(s), and harbored DNA mutations centered at the ZFN binding sites. These data demonstrate the utility of ZFNs in multi‐locus genome engineering. Biotechnol. Bioeng. 2010; 106: 97–105. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
Fan B  Huang P  Zheng S  Sun Y  Fang C  Sun Z 《Animal biotechnology》2011,22(4):211-222
Synthetic zinc finger nucleases (ZFNs) are useful for the improvement of site directed integration of foreign gene into vertebrate chromosomes. To facilitate site-directed integration of foreign genes into the 3'-untranslated region of the chicken ovalbumin gene, we have constructed ZFN expression vectors using Zinc Finger Consortium Vector Kits and tested the functionality of these ZFN constructs. Coding sequences for 6 zinc fingers were assembled following the modular assembly method. The zinc finger assembly was fused to two FokI catalytic domains. Various configurations of linker regions between domains were tested for their influence on enzymatic activity, using plasmid substrate containing the target sequence. Results indicated that ZFN with an elongated linker between two nuclease domains had a high catalytic activity.  相似文献   

9.
The tumor suppressor gene p53 is mutated or deleted in over 50% of human tumors. As functional p53 plays a pivotal role in protecting against cancer development, several strategies for restoring wild-type (wt) p53 function have been investigated. In this study, we applied an approach using gene repair with zinc finger nucleases (ZFNs). We adapted a commercially-available yeast one-hybrid (Y1H) selection kit to allow rapid building and optimization of 4-finger constructs from randomized PCR libraries. We thus generated novel functional zinc finger nucleases against two DNA sites in the human p53 gene, near cancer mutation 'hotspots'. The ZFNs were first validated using in vitro cleavage assays and in vivo episomal gene repair assays in HEK293T cells. Subsequently, the ZFNs were used to restore wt-p53 status in the SF268 human cancer cell line, via ZFN-induced homologous recombination. The frequency of gene repair and mutation by non-homologous end-joining was then ascertained in several cancer cell lines, using a deep sequencing strategy. Our Y1H system facilitates the generation and optimisation of novel, sequence-specific four- to six-finger peptides, and the p53-specific ZFN described here can be used to mutate or repair p53 in genomic loci.  相似文献   

10.
11.
Engineered nucleases are proteins that are able to cleave DNA at specified sites in the genome. These proteins have recently been used for gene targeting in a number of organisms. We showed earlier that zinc finger nucleases (ZFNs) can be used for generating gene-specific mutations in Bombyx mori by an error-prone DNA repair process of non-homologous end joining (NHEJ). Here we test the utility of another type of chimeric nuclease based on bacterial TAL effector proteins in order to induce targeted mutations in silkworm DNA. We designed three TAL effector nucleases (TALENs) against the genomic locus BmBLOS2, previously targeted by ZFNs. All three TALENs were able to induce mutations in silkworm germline cells suggesting a higher success rate of this type of chimeric enzyme. The efficiency of two of the tested TALENs was slightly higher than of the successful ZFN used previously. Simple design, high frequency of candidate targeting sites and comparable efficiency of induction of NHEJ mutations make TALENs an important alternative to ZFNs.  相似文献   

12.
Custom-designed zinc finger nucleases (ZFNs), proteins designed to cut at specific DNA sequences, are becoming powerful tools in gene targeting—the process of replacing a gene within a genome by homologous recombination (HR). ZFNs that combine the non-specific cleavage domain (N) of FokI endonuclease with zinc finger proteins (ZFPs) offer a general way to deliver a site-specific double-strand break (DSB) to the genome. The development of ZFN-mediated gene targeting provides molecular biologists with the ability to site-specifically and permanently modify plant and mammalian genomes including the human genome via homology-directed repair of a targeted genomic DSB. The creation of designer ZFNs that cleave DNA at a pre-determined site depends on the reliable creation of ZFPs that can specifically recognize the chosen target site within a genome. The (Cys2His2) ZFPs offer the best framework for developing custom ZFN molecules with new sequence-specificities. Here, we explore the different approaches for generating the desired custom ZFNs with high sequence-specificity and affinity. We also discuss the potential of ZFN-mediated gene targeting for ‘directed mutagenesis’ and targeted ‘gene editing’ of the plant and mammalian genome as well as the potential of ZFN-based strategies as a form of gene therapy for human therapeutics in the future.  相似文献   

13.
14.
Zinc finger nucleases (ZFNs) are powerful tools for gene therapy and genetic engineering. The high specificity and affinity of these chimeric enzymes are based on custom-designed zinc finger proteins (ZFPs). To improve the performance of existing ZFN technology, we developed an in vivo evolution-based approach to improve the efficacy of the FokI cleavage domain (FCD). After multiple rounds of cycling mutagenesis and DNA shuffling, a more efficient nuclease variant (Sharkey) was generated. In vivo analyses indicated that Sharkey is > 15-fold more active than wild-type FCD on a diverse panel of cleavage sites. Further, a mammalian cell-based assay showed a three to sixfold improvement in targeted mutagenesis for ZFNs containing derivatives of the Sharkey cleavage domain. We also identified mutations that impart sequence specificity to the FCD that might be utilized in future studies to further refine ZFNs through cooperative specificity. In addition, Sharkey was observed to enhance the cleavage profiles of previously published and newly selected heterodimer ZFN architectures. This enhanced and highly efficient cleavage domain will aid in a variety of ZFN applications in medicine and biology.  相似文献   

15.
16.
Molybdenum and tungsten complexes as models for the active sites of assimilatory or dissimilatory nitrate reductases (NR) were computed at the CPCM-B98/SDDp//B3LYP/Lanl2DZp* plus zero point energy level of density functional theory. The ligands were chosen on the basis of available experimental protein or small chemical model structures. A water molecule is found to bind to assimilatory NR models [(Me2C2S2)MO(YMe)] (−11.5 kcal mol−1 for M is Mo, Y is S) and may be replaced by nitrate (−4.5 kcal mol−1) (but a hydroxy group may not). Nature’s choice of M is Mo and Y is S for NR has the largest activation energy for protein-free models (13.3 kcal mol−1) and the least exothermic reaction energy for the nitrate reduction (−14.9 kcal mol−1) compared with M is W and Y is O or Se alternatives. Water binding to dissimilatory NR model complexes [(Me2C2S2)2M(YR)] is considerably endothermic (10.3 kcal mol−1); nitrate binding is only slightly so (1.5 kcal mol−1 for RY is MeS). The exchange of an oxo ligand (assimilatory NR) for a dithiolato ligand (dissimilatory NR model) reduces the exothermicity (−8.6 kcal mol−1 relative to the fivefold-coordinate reduced complex) and raises the barrier for oxygen atom transfer (OAT) in the nitrate complex (19.2 kcal mol−1). Not for the mono but only for the bisdithiolato complexes hydrogen bonding involving the coordinated substrate may significantly lower the OAT barrier as shown by explicitly adding water molecules. Substitution of tungsten for molybdenum generally lowers OAT activation energies and makes nitrate reduction reaction energies more negative. Bidentate carboxylato binding identified in Escherichia coli NarGHI is the preferred binding mode also for an acetato model. However, one dithiolato ligand folds when the MoVI center is bare of a good π-donor ligand, e.g., an oxo group. Computations on [(mnt)2MoIV(YR)(PPh3)] [mnt is (CN)2C2S2 2−] gave a smaller nitrate reduction activation energy for RY is Cl, compared with RY is PhS, although experimentally only the phenyl thiolato complex and not the chloro complex was found to be a functional NR model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Zinc finger nucleases (ZFNs) have been used successfully to create genome-specific double-strand breaks and thereby stimulate gene targeting by several thousand fold. ZFNs are chimeric proteins composed of a specific DNA-binding domain linked to a non-specific DNA-cleavage domain. By changing key residues in the recognition helix of the specific DNA-binding domain, one can alter the ZFN binding specificity and thereby change the sequence to which a ZFN pair is being targeted. For these and other reasons, ZFNs are being pursued as reagents for genome modification, including use in gene therapy. In order for ZFNs to reach their full potential, it is important to attenuate the cytotoxic effects currently associated with many ZFNs. Here, we evaluate two potential strategies for reducing toxicity by regulating protein levels. Both strategies involve creating ZFNs with shortened half-lives and then regulating protein level with small molecules. First, we destabilize ZFNs by linking a ubiquitin moiety to the N-terminus and regulate ZFN levels using a proteasome inhibitor. Second, we destabilize ZFNs by linking a modified destabilizing FKBP12 domain to the N-terminus and regulate ZFN levels by using a small molecule that blocks the destabilization effect of the N-terminal domain. We show that by regulating protein levels, we can maintain high rates of ZFN-mediated gene targeting while reducing ZFN toxicity.  相似文献   

18.
Engineered zinc-finger nucleases (ZFNs) are promising tools for genome manipulation, and determining off-target cleavage sites of these enzymes is of great interest. We developed an in vitro selection method that interrogates 10(11) DNA sequences for cleavage by active, dimeric ZFNs. The method revealed hundreds of thousands of DNA sequences, some present in the human genome, that can be cleaved in vitro by two ZFNs: CCR5-224 and VF2468, which target the endogenous human CCR5 and VEGFA genes, respectively. Analysis of identified sites in one cultured human cell line revealed CCR5-224-induced changes at nine off-target loci, though this remains to be tested in other relevant cell types. Similarly, we observed 31 off-target sites cleaved by VF2468 in cultured human cells. Our findings establish an energy compensation model of ZFN specificity in which excess binding energy contributes to off-target ZFN cleavage and suggest strategies for the improvement of future ZFN design.  相似文献   

19.
The induction of double-strand breaks (DSBs) in plant genomes can lead to increased homologous recombination or site-specific mutagenesis at the repair site. This phenomenon has the potential for use in gene targeting applications in plant cells upon the induction of site-specific genomic DSBs using zinc finger nucleases (ZFNs). Zinc finger nucleases are artificial restriction enzymes, custom-designed to cleave a specific DNA sequence. The tools and methods for ZFN assembly and validation could potentially boost their application for plant gene targeting. Here we report on the design of biochemical and in planta methods for the analysis of newly designed ZFNs. Cloning begins with de novo assembly of the DNA-binding regions of new ZFNs from overlapping oligonucleotides containing modified helices responsible for DNA-triplet recognition, and the fusion of the DNA-binding domain with a Fok I endonuclease domain in a dedicated plant expression cassette. Following the transfer of fully assembled ZFNs into Escherichia coli expression vectors, bacterial lysates were found to be most suitable for in vitro digestion analysis of palindromic target sequences. A set of three in planta activity assays was also developed to confirm the nucleic acid digestion activity of ZFNs in plant cells. The assays are based on the reconstruction of GUS expression following transient or stable delivery of a mutated uidA and ZFN-expressing cassettes into target plants cells. Our tools and assays offer cloning flexibility and simple assembly of tested ZFNs and their corresponding target sites into Agrobacterium tumefaciens binary plasmids, allowing efficient implementation of ZFN-validation assays in planta .  相似文献   

20.
Custom-designed zinc finger nucleases (ZFNs) are becoming powerful tools in gene targeting-the process of replacing a gene within a genome by homologous recombination. Here, we have studied the DNA cleavage by one such ZFN, DeltaQNK-FN, in order to gain insight into how ZFNs cleave DNA and how two inverted sites promote double-strand cleavage. DNA cleavage by DeltaQNK-FN is greatly facilitated when two DeltaQNK-binding sites are close together in an inverted orientation. Substrate cleavage was not first order with respect to the concentration of DeltaQNK-FN, indicating that double-strand cleavage requires dimerization of the FokI cleavage domain. Rates of DNA cleavage decrease as the substrate concentrations increase, suggesting that the DeltaQNK-FN molecules are effectively "trapped" in a 1:1 complex on DNA when the DNA is in excess. The physical association of two ZFN monomers on DNA was monitored by using the biotin-pull-down assay, which showed that the formation of DeltaQNK-FN active complex required both binding of the two DeltaQNK-FN molecules to specific DNA sites and divalent metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号