首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hughes et al. (Coral Reefs, 2011, in press) challenge our interpretations of the changes in coral cover observed on the Great Barrier Reef (GBR) between 1986 and 2004 (Sweatman et al. in Coral Reefs 30:521–531, 2011). They question whether we can accurately assign all causes of coral loss; we contend that this makes no difference to the observed changes. They defend the validity of historical data on coral cover from before the start of systematic large-scale monitoring and conclude that coral cover has been declining since at least 1960, but we find no trend in the early data. We remain convinced that combining data collected at different spatial scales (quadrats and transects in the past mixed with more recent whole-reef averages from manta tows) are likely to overestimate decline, because whole-reef averages will very rarely reach the high cover values that can occur at the quadrat scale. Hughes et al. (Coral Reefs, 2011, in press) state that we dismiss runoff as a cause of ecosystem degradation; we defend our interpretations and dispute some of their examples. In summary, we stand by our conclusion that coral cover on the GBR declined in the period 1986–2004 but through localised and unsynchronised changes that included recovery.  相似文献   

2.
3.
4.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

5.
The intentional production and destruction each year of millions of companion animals is a sobering fact. The need for meaningful statistical data on this phenomenon is urgent. No less pressing, however, is the need for a conceptual framework to make sense of the empirical findings. The conventional focus on overpopulation is inadequate and places unnecessary limits on the way in which the problem is approached. I propose in its place a market-based model that takes seriously the role of consumer demand and considers the flaws and inefficiencies distorting the market for companion animals. Shifting attention to the choices consumers make in acquiring and discarding animal companions suggests new possibilities for change and provides a useful focal point for further empirical work.  相似文献   

6.
7.
Baldwin IT 《Ecology letters》2007,10(3):E1; discussion E2-E1; discussion E3
The conclusion that herbivory induces 'alkaloids' in nectar but not in leaves, is likely an artefact of using pot-bound plants and analytical procedures that only measure anabasine, a minor alkaloid representing 0.3% of the total alkaloids produced by Nicotiana tabacum.  相似文献   

8.
9.
10.
Coral reefs can undergo unexpected and dramatic changes in community composition, so called phase shifts. This can have profound consequences for ecosystem services upon which human welfare depends. Understanding of this behavior is in many aspects still in its infancy. Resilience has been argued to provide insurance against unforeseen ecosystem responses in the face of environmental change, and has become a prime goal for the management of coral reefs. However, diverse definitions of resilience can be found in the literature, making its meaning ambiguous. Several studies have used the term as a theoretical framework and concern regarding its practical applicability has been raised. Consequently, operationalizing theory to make resilience observable is an important task, particularly for policy makers and managers dealing with pressing environmental problems. Ultimately this requires some type of empirical assessments, something that has proven difficult due to the multidimensional nature of the concept. Biodiversity, spatial heterogeneity, and connectivity have been proposed as cornerstones of resilience as they may provide insurance against ecological uncertainty. The aim of this article is to provide an overview of the divergent uses of the concept and to propose empirical indicators of the cornerstones of coral reef resilience. These indicators include functional group approaches, the ratios of “good” and “bad” colonizers of space, measurements of spatial heterogeneity, and estimates of potential space availability against grazing capacity. The essence of these operational indicators of resilience is to use them as predictive tools to recognize vulnerability before disturbance occurs that may lead to abrupt phase shifts. Moving toward operationalizing resilience theory is imperative to the successful management of coral reefs in an increasingly disturbed and human-dominated environment. Communicating by Ecology Editor Professor Peter Mumby Order of authors 2–3 is alphabetic  相似文献   

11.
12.
13.
The 1998 global coral bleaching event was the largest recorded historical disturbance of coral reefs and resulted in extensive habitat loss. Annual censuses of reef fish community structure over a 12-year period spanning the bleaching event revealed a marked phase shift from a prebleach to postbleach assemblage. Surprisingly, we found that the bleaching event had no detectable effect on the abundance, diversity or species richness of a local cryptobenthic reef fish community. Furthermore, there is no evidence of regeneration even after 5–35 generations of these short-lived species. These results have significant implications for our understanding of the response of coral reef ecosystems to global warming and highlight the importance of selecting appropriate criteria for evaluating reef resilience.  相似文献   

14.
15.
The measurements reported by Sacks et al. (4) were examined critically and shown to be faulty. When performed correctly, the measurements yielded results that correspond closely to those predicted by the model of the brain uptake of 2-deoxyglucose formulated by Sokoloff et al. (5).In the Comment section, the Journal publishes papers that discuss possible inadequacies in methods or interaction, or posible misunderstandings. It is the hope that this facilitates the establishment of useful results and approaches, rather than stimulating polemics. It is in this spirit that this letter is published as a comment on a paper previously published in the Journal. With this, we consider the discussion closed as far as the Journal is concerned.The Editor.  相似文献   

16.
Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience.  相似文献   

17.
18.
19.
Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.  相似文献   

20.
We used high-resolution, airborne, digital, multi-spectral imagery to map bathymetry and the percent of living coral in the nearshore marine environment of Kailua Bay, Oahu, Hawai'i. Three spectral bands, with centers at 488, 551, and 577 nm (each with a full-width half maximum of 10 nm), were selected for good water transmission and good coral/sand/algae discrimination. However, the third band (577 nm) was not used in the depth and bottom-type solutions. The spatial resolution of 1 m per pixel was selected to balance resolution with the size of the total data set. A radiative transfer model accounting for the optical effects of the atmosphere, ocean surface, water, and reflection off the ocean bottom substrates was applied to the multi-spectral images, normalizing multiple images to one another for a mosaic that spans the bay. Atmospheric parameters in the radiative transfer model were estimated from published values measured for similar environments. Water-attenuation coefficients for the model were determined from the observed spectral data values over the sand bottom type in the bay. Relative depth and bottom-type coefficients were derived by a method most simply described as the "differencing" of two spectral bands. Accuracy exceeding 85% in predicted depth was achieved to a depth of 25 m. Depth prediction errors were assessed with comparison to hydrographic survey data. Classification of bottom-type coefficients into seven "percent living coral" categories results in 77% overall accuracy tested by diver-obtained line-intercept transect data (ground truth). Bottom-type coefficients derived by the model were corrected for atmospheric and ocean conditions on the date of collection, so spatial changes in bathymetry and "percent living coral" through time can be analyzed and related to environmental factors. The radiative transfer model and the "differencing" method used to solve for depth and "percent living coral" can be applied to any airborne, passive remote sensing digital data with appropriate spectral bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号