首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Zhou J  Liao J  Zheng X  Shen H 《BMB reports》2012,45(3):133-140
Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection. [BMB reports 2012; 45(3): 133-140].  相似文献   

4.
Oncogenic fusion genes as the result of chromosomal rearrangements are important for understanding genome instability in cancer cells and developing useful cancer therapies. To date, the mechanisms that create such oncogenic fusion genes are poorly understood. Previously we reported an unappreciated RNA-driven mechanism in human prostate cells in which the expression of chimeric RNA induces specified gene fusions in a sequence-dependent manner. One fundamental question yet to be addressed is whether such RNA-driven gene fusion mechanism is generalizable, or rather, a special case restricted to prostate cells. In this report, we demonstrated that the expression of designed chimeric RNAs in human endometrial stromal cells leads to the formation of JAZF1-SUZ12, a cancer fusion gene commonly found in low-grade endometrial stromal sarcomas. The process is specified by the sequence of chimeric RNA involved and inhibited by estrogen or progesterone. Furthermore, it is the antisense rather than sense chimeric RNAs that effectively drive JAZF1-SUZ12 gene fusion. The induced fusion gene is validated both at the RNA and the genomic DNA level. The ability of designed chimeric RNAs to drive and recapitulate the formation of JAZF1-SUZ12 gene fusion in endometrial cells represents another independent case of RNA-driven gene fusion, suggesting that RNA-driven genomic recombination is a permissible mechanism in mammalian cells. The results could have fundamental implications in the role of RNA in genome stability, and provide important insight in early disease mechanisms related to the formation of cancer fusion genes.  相似文献   

5.
6.
High-risk human papillomaviruses (HPVs) are the causative agents of certain human cancers. HPV type 16 (HPV16) is the papillomavirus most frequently associated with cervical cancer in women. The E6 and E7 genes of HPV are expressed in cells derived from these cancers and can transform cells in tissue culture. Animal experiments have demonstrated that E6 and E7 together cause tumors. We showed previously that E6 and E7 together or E7 alone could induce skin tumors in mice when these genes were expressed in the basal epithelia of the skin. In this study, we investigated the role that the E6 gene plays in carcinogenesis. We generated K14E6 transgenic mice, in which the HPV16 E6 gene was directed in its expression by the human keratin 14 promoter (hK14) to the basal layer of the epidermis. We found that E6 induced cellular hyperproliferation and epidermal hyperplasia and caused skin tumors in adult mice. Interestingly, the tumors derived from E6 were mostly malignant, as opposed to the tumors from E7 mice, which were mostly benign. This result leads us to hypothesize that E6 may contribute differently than E7 to HPV-associated carcinogenesis; whereas E7 primarily contributes to the early stages of carcinogenesis that lead to the formation of benign tumors, E6 primarily contributes to the late stages of carcinogenesis that lead to malignancy.  相似文献   

7.
Biological and molecular aspects of radiation carcinogenesis in mouse skin   总被引:1,自引:0,他引:1  
The process of mouse skin carcinogenesis can be operationally subdivided into at least three stages which have been termed initiation, promotion, and progression. Ionizing radiation has been found to be a weak initiator of malignant squamous cell carcinomas (SCCs) when radiation was followed by repeated treatments of the skin with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Besides SCCs, ionizing radiation was found to induce, independent of tumor promoters, basal cell carcinomas (BCCs), a tumor histology not normally seen with chemical carcinogens and mouse skin. Fractionated doses of 1 MeV electrons were found to enhance the conversion of chemically induced benign papillomas to malignant SCCs. In addition to the biological studies, questions related to dominant transforming genes and differential gene expression in the radiation-initiated mouse skin tumors have been explored. Distinct non-ras dominant transforming gene(s) have been detected in radiation-initiated, TPA-promoted SCCs. Differences in the expression pattern of tumor-associated genes were seen in comparing chemically to radiation-induced benign and malignant skin tumors. Therefore, ionizing radiation has been shown to be active in the initiation of malignant skin tumors and progression of benign to malignant tumors in the mouse skin. The ability to divide the process of carcinogenesis into multiple stages in the mouse skin model has facilitated mechanistic studies that may elucidate the molecular pathways involved in radiation-versus chemically induced tumor development.  相似文献   

8.
Chromosomal abnormalities affecting proto-oncogenes are frequently detected in human cancer. Oncogenes of the myc family are activated in several types of tumors as a result of gene amplification or chromosomal translocation. We have recently found the L-myc gene involved in a gene fusion in small-cell lung cancer (SCLC). This results in a chimeric protein with amino-terminal sequences from a novel gene named rif joined to L-myc. Here we present a preliminary structural characterization of the rlf-L-myc fusion gene, which has been found only in cells with an amplified L-myc gene. In addition, we have used somatic cell hybrids to assign the normal rlf locus to the same chromosome (chromosome 1) on which L-myc resides. Finally, we have been able to establish a physical linkage between rif and L-myc with pulsed-field gel electrophoresis. Our results demonstrate that normal rlf and L-myc genes are separated by less than 800 kb of DNA. Thus, the rlf-L-myc gene fusions are due to similar but not identical intrachromosomal rearrangements at 1p32. The presence of independent genetic lesions that cause the formation of identical chimeric rlf-L-myc proteins suggests a role for the fusion protein in the development of these tumors.  相似文献   

9.
10.
Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.  相似文献   

11.
Chromosome translocations in neoplasia commonly result in fusion genes that may encode either novel fusion proteins or normal, but ectopically expressed proteins. Here we report the cloning of a novel fusion gene in a common type of salivary and bronchial gland tumor, mucoepidermoid carcinomas (MEC), as well as in benign Warthin's tumors (WATs). The fusion, which results from a t(11;19)(q21-22;p13) translocation, creates a chimeric gene in which exon 1 of a novel gene of unknown function, designated WAMTP1, is linked to exons 2-5 of the recently identified Mastermind-like Notch coactivator MAML2. In the fusion protein, the N-terminal basic domain of MAML2, which is required for binding to intracellular Notch (Notch ICD), is replaced by an unrelated N-terminal sequence from WAMTP1. Mutation analysis of the N-terminus of WAMTP1-MAML2 identified two regions of importance for nuclear localization (amino acids 11-20) and for colocalization with MAML2 and Notch1 ICD in nuclear granules (amino acids 21-42). Analyses of the Notch target genes HES5 and MASH1 in MEC tumors with and without the WAMTP1-MAML2 fusion revealed upregulation of HES5 and downregulation of MASH1 in fusion positive MECs compared to normal salivary gland tissue and MECs lacking the fusion. These findings suggest that altered Notch signaling plays an important role in the genesis of benign and malignant neoplasms of salivary and bronchial gland origin.  相似文献   

12.
Hepatocellular carcinoma (HCC) is one of the human cancers clearly linked to viral infections. Although the major risk factors for HCC development have been elucidated, the hepatocellular carcinogenesis pathway resulting in malignant transformation of liver cells remains to be clarified. Recently, some results of microarray and comparative genomic hybridization analysis have been provided as comprehensive studies of genomic instability in HCC, including mutation, deletion and DNA copy losses. In this work, the full-length cDNA library has been constructed and sequenced, and the sequencing results have been further clustered and analyzed. The results show that 1,342 genes have been found, and about 300 of these genes may be important in e.g. cell proliferation, DNA repair and apoptosis. After further analysis of DNA sequences, the deletion genotypes of at least 24 genes have been found. However, the functional changes of these deletion mutants and their significance in hepatocellular carcinogenesis remain to be clarified. This research may be one of the best to obtain the candidate genes for hepatocellular carcinogenesis.  相似文献   

13.
DNA amplification of cellular proto-oncogenes is a well-established and common mechanism of oncogene activation in several types of human tumors, including the rapidly fatal small-cell lung cancer (SCLC). Approximately one fourth of primary SCLC tumors contain amplified copies of one of the three myc proto-oncogenes. Occasionally DNA amplification of the myc genes is associated with DNA rearrangements. Specifically, a novel locus named rlf is often involved in intrachromosomal L-myc rearrangements in SCLC. The structurally similar rearrangements are probably due to a highly repetitive region upstream of the L-myc gene, and result in the formation of a chimeric rlf-L-myc fusion protein. The consistent finding of the rlf-L-myc rearrangement in SCLC suggests that it may provide a selective advantage to the cells harboring it.  相似文献   

14.
The liver''s role in vinyl chloride toxicity and carcinogenicity is providing a better understanding of the chemical carcinogenesis mechanism. A variety of both malignant and benign hepatic tumors has been demonstrated with prolonged exposure to vinyl chloride. The multi-system involvment of this carcinogen and toxin has provided a model for the study of chemical carcinogenesis common to both man and animal. Clinical studies have shown the usefulness of biochemical, radioisotopic, and radiological studies in the detection of toxic and carcinogenic lesions. Animal studies have demonstrated the biochemical metabolism by the liver of vinyl chloride-produced intermediates which are mutagenic in bacterial systems and may be the ultimate carcinogens. Hepatic subcellular enzyme studies prove preliminary evidence of cellular adaptation and increased detoxification. Disruption of this oxidization and detoxification balance may be the key to the malignant transformation of cells. A working hypothesis is presented which may explain the metabolism of vinyl chloride into mutagenic intermediates by the liver cell and the development of malignant transformation by extra hepatic sinusoidal lining cells, lung cells, and brain tissue.  相似文献   

15.
Several oncogenes and tumor-suppressor genes are involved either as early or late event in thyroid gland carcinogenesis. Human FHIT (fragile histidine triad) gene is highly conserved gene whose loss of function may be important in the development and/or progression of various types of cancer. We undertook this study to analyze FHIT and p53 gene status in different benignant and malignant thyroid tumors. Status of these genes as well as intensity of apoptosis was analyzed in tumor tissues by molecular genetic methods, immunohistochemistry, and FACS-scan analysis. The majority of the malignant thyroid cancers displayed aberrant expression of FHIT gene, concominant with p53 gene inactivation. This is followed by low rate of apoptosis, which may be important in the development and/or progression of thyroid cancer. We found higher incidence of p53 mutation and aberrant processing of FHIT mRNA in malignant tumors (papillary, follicular, medullary and anaplastic carcinomas) and in those tumors with distant metastasis. The growth of p53(-)/FHIT(-) follicular carcinoma of human origin was much faster in nude mice than p53(+)/FHIT(+) follicular carcinoma, and mice had shorter survival rate. Our results show a correlation between aberrant FHIT and p53 expression, low rate of apoptosis, and malignancy. Concomitant aberration of FHIT gene and p53 could be responsible for development of highly malignant types of thyroid cancer and may be considered as a prognostic marker for these tumors.  相似文献   

16.
Urinary bladder cancer accounts for approximately 5% of all newly diagnosed malignancies in the developed world. Smoking, occupational exposure and dietary factors constitute the most important exogenous risk factors for bladder carcinogenesis. Yet, individuals with seemingly equal exposure to environmental carcinogens develop bladder cancer in an unpredictable manner. This is probably attributed to the fact that DNA repair capacity varies in human populations, pointing the role of genetic susceptibility in human cancer. Numerous studies demonstrated that certain genetic and epigenetic alterations are fairly constant. Loss of heterozygosity (LOH) at chromosome 9 is an aberration found in urothelial cell carcinoma (UCC) of all stages and grades as well as in dysplastic urothelium, possibly representing an early event in urinary bladder carcinogenesis. On the contrary, gains of 3p can only be found in tumors demonstrating highly malignant behavior. Microsatellite instability (MSI) is another frequent finding in urinary bladder cancer. This has led many investigator groups to employ the analysis for MSI for early diagnosis of UCC with promising results. The silencing of certain genes such as p16(INK4A) and DAPK by aberrant methylation of their promoter region also represents an important mechanism in carcinogenesis. Similarly, alterations in certain tumor suppressor genes and proto-oncogenes result in uncontrolled cell proliferation, reduced apoptosis and have been associated with more aggressive UCC phenotypes. Undoubtedly, the application of these observations in clinical practice will make a breakthrough in the management of bladder cancer.  相似文献   

17.
We have previously reported that precursor-accumulating (PAC) vesicles found exclusively in developing seeds are involved in a transport of seed storage proteins, such as 2S albumin, from the endoplasmic reticulum to protein-storage vacuoles. Here, we constructed chimeric genes that encode fusion proteins consisting of both various lengths of polypeptides derived from pumpkin 2S albumin and a selectable marker enzyme, phosphinothricin acetyltransferase. The chimeric genes were expressed in transgenic Arabidopsis in order to investigate the mechanism of the PAC vesicle formation. A fusion protein expressed by one of the chimeric genes is accumulated as a proprotein-precursor form, and localized in novel vesicles of vegetative cells. The vesicles show distinct features that well much to the PAC vesicles. Despite of the accumulation of the fusion protein, the transgenic Arabidopsis is still sensitive to phosphinothricin. Phosphinothricin acetyltransferase contained in the fusion protein is obviously compartmentalized in the PAC-like vesicles that do not permit the detoxification of this herbicide. These results indicate that the PAC-like vesicle can be induced in vegetative cells by the ectopic expression of the protein that is destined to be compartmentalized into the PAC vesicles.  相似文献   

18.
TICs are characterized by their ability to self-renew, differentiate and initiate tumor formation. miRNAs are small noncoding RNAs that bind to mRNAs resulting in regulation of gene expression and biological functions. The role of miRNAs and TICs in cancer progression led us to hypothesize that miRNAs may regulate genes involved in TIC maintenance. Using whole genome miRNA and mRNA expression profiling of TICs from primary prostate cancer cells, we identified a set of up-regulated miRNAs and a set of genes down-regulated in PSs. Inhibition of these miRNAs results in a decrease of prostatosphere formation and an increase in target gene expression. This study uses genome-wide miRNA profiling to analyze expression in TICs. We connect aberrant miRNA expression and deregulated gene expression in TICs. These findings can contribute to a better understanding of the molecular mechanisms governing TIC development/maintenance and the role that miRNAs have in the fundamental biology of TICs.  相似文献   

19.
A fusion protein formed by L-myc and a novel gene in SCLC.   总被引:3,自引:0,他引:3       下载免费PDF全文
T P Mkel  K Saksela  G Evan    K Alitalo 《The EMBO journal》1991,10(6):1331-1335
Oncogenic activation of myc genes in human cancer involves deregulated expression of myc proteins with no major structural alterations. Here two independent small cell lung carcinoma (SCLC) cell lines were found to express similar novel proteins antigenically related to L-myc. cDNAs corresponding to these proteins were cloned and shown to encode chimeric polypeptides with amino-terminal sequences from a novel gene named rlf joined to the L-myc protein. Although the chimeric mRNAs were shown to be identical, they result from distinct DNA rearrangements. The L-myc fusion protein may represent another activation mechanism of the myc proto-oncogenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号