共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang W Zhang L Ping G Zhang Y Kettrup A 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,768(1):211-214
Equations to describe the two sites binding between proteins and ligands were deduced. According to these equations, not only the binding constants, but also the mole fraction of proteins in different forms could be obtained. Using the published data on the interaction between human serum albumin (HSA) and three kinds of porphyrin (coproporphyrin (CP), uroporphyrin I (UP) and protoporphyrin (PP)), a further study on their binding was carried out. It was concluded that there may exist two binding sites with the binding constants at the first site, proved to be the preferential one, being 6.50 x l0(5), 1.94 x 10(6) and 8.94 x 10(5), respectively. In addition, it was also demonstrated that the two binding sites of HSA with CP and UP might be of different kinds, though those of HSA and PP were of the same kind but at different positions. 相似文献
2.
Use of an immobilised human serum albumin HPLC column as a probe of drug-protein interactions: the reversible binding of valproate 总被引:1,自引:0,他引:1
Bertucci C Andrisano V Gotti R Cavrini V 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,768(1):147-155
The reversible binding of valproate to human serum albumin determines a decrease of the binding of ligands that selectively bind to site I, site II, and bilirubin binding site. The binding inhibition was followed by displacement chromatography methodology using increasing concentrations of the competitor, i.e. valproate, in the mobile phase. Significant binding inhibition was observed for drugs binding at site I and site II. The greater displacement was observed for the more retained enantiomer of benzodiazepines and profens. A reduction of the affinity was observed also in the case of phenol red, this compound being selected as representative of bilirubin binding site. Difference circular dichroism spectroscopy was also used to characterise the binding of valproate to human serum albumin. This antiepilectic drug was proved to affect the binding at site I, II, and bilirubin binding site. The data have physiological relevance because significant inhibition of the binding resulted at clinic concentrations of valproate. 相似文献
3.
Mendez DL Jensen RA McElroy LA Pena JM Esquerra RM 《Archives of biochemistry and biophysics》2005,444(2):92-99
We monitored the unfolding of human serum albumin (HSA) and glycated human serum albumin (gHSA) subjected to guanidine hydrochloride (GndHCl) by using fluorescence and circular dichroism (CD) spectroscopy. A two-state model with sloping baselines best described the Trp-214 fluorescence unfolding measurements, while a three-state model best described the far-UV CD unfolding data. Glycation of HSA increased the [D](50%) point by approximately 0.20M. This corresponded to an increase in the free energy of unfolding of gHSA relative to HSA of 2.6kJ/mol. The intrinsic fluorescence of Trp-214 in gHSA is 0.72 of that of HSA and the far-UV CD spectrum of gHSA is nearly identical to that of HSA. These results showed that glycation altered the local structure around Trp-214 while not significantly impacting the secondary structure, and this alteration translated into an overall change in the stability of gHSA compared to HSA. 相似文献
4.
Mahesh Gokara Vidadala V. Narayana Vineet Sadarangani Shatabdi Roy Chowdhury Sreelaxmi Varkala Dhevalapally B. Ramachary 《Journal of biomolecular structure & dynamics》2017,35(10):2280-2292
In this study, molecular binding affinity was investigated for Nefopam analogues (NFs), a functionalized benzoxazocine, with human serum albumin (HSA), a major transport protein in the blood. Its binding affinity and concomitant changes in its conformation, binding site and simulations were also studied. Fluorescence data revealed that the fluorescence quenching of HSA upon binding of NFs analogues is based on a static mechanism. The three analogues of NFs binding constants (KA) are in the order of NF3 > NF2 > NF1 with values of 1.53 ± .057 × 104, 2.16 ± .071 × 104 and 3.6 ± .102 × 105 M?1, respectively. Concurrently, thermodynamic parameters indicate that the binding process was spontaneous, and the complexes were stabilized mostly by hydrophobic interactions, except for NF2 has one hydrogen bond stabilizes it along with hydrophobic interactions. Circular dichroism (CD) studies revealed that there is a decrease in α-helix with an increase in β-sheets and random coils signifying partial unfolding of the protein upon binding of NFs, which might be due to the formation of NFs-HSA complexes. Further, molecular docking studies showed that NF1, NF2 and NF3 bound to subdomains IIIA, IB and IIA through hydrophobic interactions. However, NF1 have additionally formed a single hydrogen bond with LYS 413. Furthermore, molecular simulations unveiled that NFs binding was in support with the structural perturbation observed in CD, which is evident from the root mean square deviation and Rg fluctuations. We hope our insights will provide ample scope for engineering new drugs based on the resemblances with NFs for enhanced efficacy with HSA. 相似文献
5.
Kerr ID 《Biochemical and biophysical research communications》2004,314(1):166-173
The urea-induced unfolding of 'N' isomer (occurring at pH 7.0) and 'B' isomer (occurring at pH 9.0) of human serum albumin was studied by fluorescence and circular dichroism spectroscopic measurements. Urea-induced destabilization in different domains of both the isomers was monitored by using domain specific ligands, hemin (domain-I), chloroform, bilirubin (domain-II), and diazepam (domain-III). Urea-induced denaturation of N and B isomers of HSA showed a two-step, three-state transition with accumulation of intermediates around 4.8-5.2M and 3.0-3.4M urea concentrations, respectively. During first transition (0-4.8M urea for N isomer and 0-3.0M urea for B isomer) a continuous decrease in diazepam binding suggested major conformational changes in domain-III prior to intermediate formation. On the other hand, binding of hemin, a ligand for domain-IB and chloroform, whose binding site is located in domain-IIA remains unchanged up to 5.0M urea for N isomer and 3.0M urea for B isomer. Similarly, fluorescence intensity of Trp-214 that resides in domain-IIA remained unchanged up to the above-said urea concentrations and decreased thereafter. Absence of any decrease in hemin binding, chloroform binding, and Trp-214 fluorescence suggested the non-involvement of domain-IB and domain-IIA in intermediate formation. A significant increase in bilirubin binding prior to intermediate formation showed favorable conformational rearrangement in bilirubin binding cavity formed by loop 4 of domain-IB and loop 3 of domain-IIA. Further, a nearly complete abolishment of bilirubin binding to both isomers around 7.0M and 6.0M urea concentrations, respectively, indicated complete separation of domain-I from domain-II from each other. From these observations it can be concluded that N to B transition of human serum albumin shifted the intermediate formation towards lower urea concentration (3.0-3.4M urea for B isomer as against 4.8-5.2M urea for N isomer). Further both the intermediates were found to possess similar alpha-helical (approximately 39%) content and ligand binding properties. 相似文献
6.
Y. C. Guillaume E. Peyrin A. Berthelot 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1999,728(2):2704
The use of immobilized human serum albumin (HSA) as a stationary phase in affinity chromatography has been shown to be useful in resolving optical antipodes or to investigate interactions between drugs and protein. However, to our knowledge, no inorganic ion binding has been studied on this immobilized protein type. To do this, the human serum albumin stationary phase was assimilated to a weak cation-exchanger by working with a mobile phase pH equal to 6.5. A study of the eluent ionic strength effect on ion retention was carried out by varying the buffer concentrations and the column temperatures. The thermodynamic parameters for magnesium and calcium transfer from the mobile to the stationary phase were determined from linear van’t Hoff plots. An enthalpy–entropy compensation study revealed that the type of interaction was independent of the mobile phase composition. A simple model based on the Gouy–Chapman theory was considered in order to describe the retention behavior of the test cations with the mobile phase ionic strength. From this theoretical approach, the relative charge densities of the human serum albumin surface implied in the binding process were estimated at different column temperatures. 相似文献
7.
Beck JL Ambahera S Yong SR Sheil MM de Jersey J Ralph SF 《Analytical biochemistry》2004,325(2):326-336
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts. 相似文献
8.
M. D. Harvey V. Bablekis P. R. Banks C. D. Skinner 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2001,754(2):101
The commercially available dye, NanoOrange, has been investigated as a potential tool for clinical diagnostics due to its low cost, ease of use, and ability to detect nanomolar concentrations of protein. Virtually non-fluorescent in dilute aqueous solutions, NanoOrange fluorescence is enhanced by at least an order of magnitude upon non-covalent interaction with proteins. These features, coupled with the requirement for high throughput assays in the clinical laboratory has prompted the development of two orthogonal NanoOrange approaches. Human serum albumin (HSA) was used as a model protein for the development of both 96-well microplate and capillary electrophoresis laser-induced fluorescence (CE–LIF) assay formats. Dye performance in five commonly used buffers of various concentrations and pH indicated considerable flexibility in assay buffer selection, with optimal performance at pH 9.0. A salt concentration study indicated that increasing NaCl concentration generally decreases fluorescence emission and can be minimized by pre-diluting biological samples to a final salt concentration of 20–80 mM. Titration of protein with NanoOrange resulted in optimal HSA–NanoOrange complex formation utilizing 1× and 2× NanoOrange in the 96-well microplate and CE–LIF approaches, respectively. A NanoOrange binding model based on rapid signal enhancement and zero order fluorescence emission kinetics is proposed. The utilization of NanoOrange in CE–LIF based human serum analysis results in a signal-to-background ratio improvement of up to two orders of magnitude. 相似文献
9.
Quercetin (3,3',4',5,7-pentahydroxyflavone), a ubiquitous, bioactive plant flavonoid, is known to possess anti-cancer, anti-tumor, and other important therapeutic activities of significant potency and low systemic toxicity. In this communication, we report for the first time a study on the interactions of quercetin with the plasma protein human serum albumin (HSA), exploiting the intrinsic fluorescence emission properties of quercetin as a probe. Quercetin is weakly fluorescent in aqueous buffer medium, with an emission maximum at approximately 538 nm. Binding of quercetin with HSA leads to dramatic enhancement in the fluorescence emission intensity and anisotropy (r), along with significant changes in the fluorescence excitation and emission profiles. The excitation spectrum suggests occurrence of efficient F?rster type resonance energy transfer (FRET) from the single tryptophan-214 residue of HSA to the protein bound quercetin. The emission, excitation, and anisotropy (r=0.18 at [HSA]=30 microM) data (using the native protein) along with emission studies of quercetin using partially denatured HSA (by 8M urea) indicate that the quercetin molecules bind at a motionally restricted site near tryptophan-214 in the interdomain cleft region of HSA. Furthermore, the binding constant (K=1.9 x 10(5)M(-1)) and Gibbs free energy change (deltaG(0)=-30.12 kJ/mol)) for quercetin-HSA interaction have been calculated from the relevant anisotropy data. Implications of these results are examined, particularly in relation to prospective applications in biomedical research. 相似文献
10.
Fataneh Jafari Setareh Samadi Amin Nowroozi Komail Sadrjavadi Sajad Moradi Mohammad Reza Ashrafi-Kooshk 《Journal of biomolecular structure & dynamics》2018,36(6):1490-1510
In the present research, the binding properties of diazinon (DZN), as an organophosphorus herbicide, to human serum albumin (HSA) were investigated using combination of spectroscopic, electrochemistry, and molecular modeling techniques. Changes in the UV–Vis and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. The obtained results from spectroscopic and electrochemistry experiments along with the computational studies suggest that DZN binds to residues located in subdomains IIA of HSA with binding constant about 1410.9 M?1 at 300 K. From the thermodynamic parameters calculated according to the van’t Hoff equation, the enthalpy change ΔH° and entropy change ΔS° were found to be ?16.695 and 0.116 KJ/mol K, respectively. The primary binding pattern is determined by hydrophobic interaction and hydrogen binding occurring in so-called site I of HSA. DZN could slightly alter the secondary structure of HSA. All of experimental results are supported by computational techniques such as docking and molecular dynamics simulation using a HSA crystal model. 相似文献
11.
In this report, we have investigated the binding affinity of tofacitinib with human serum albumin (HSA) under simulated physiological conditions by using UV–visible spectroscopy, fluorescence quenching measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and molecular docking methods. The obtained results demonstrate that fluorescence intensity of HSA gets quenched by tofacitinib and quenching occurs in static manner. Binding parameters calculated from modified Stern–Volmer equation shows that the drug binds to HSA with a binding constant in the order of 105. Synchronous fluorescence data deciphered the change in the microenvironment of tryptophan residue in HSA. UV spectroscopy and DLS measurements deciphered complex formation and reduction in hydrodynamic radii of the protein, respectively. Further DSC results show that tofacitinib increases the thermo stability of HSA. Hydrogen bonding and hydrophobic interaction are the main binding forces between HSA and tofacitinib as revealed by docking results. 相似文献
12.
Antioxidant properties of human serum albumin (HSA) may explain part of its beneficial role in various diseases related to free radical attack. In the present study, the antioxidant role of Cys and Met was studied by copper-mediated oxidation of human low density lipoproteins and by free radical-induced blood hemolysis which essentially assessed metal-chelating and free radical scavenging activities, respectively. Mild conditions were set up to specifically modify Cys and Met residues by N-ethylmaleimide (NEM) and chloramine T treatments, respectively. We found that Met and Cys accounted for 40-80% of total antioxidant activity of HSA. Copper binding to HSA was decreased by about 50% with chloramine T treatment of Met whereas no change was observed after NEM treatment of Cys. Although other amino acid residues are likely to be involved in anti-/prooxidant properties of HSA, from our data, we propose that Cys chiefly works as a free radical scavenger whereas Met mainly acts as a metal chelator. 相似文献
13.
Some properties of a fragment of bovine serum albumin containing residues 184–582 of the protein sequence, produced by cyanogen
bromide cleavage, have been reported. Urea-induced difference spectra of the fragment showed considerable exposure of aromatic
chromophores by 8 M urea. Reversible unfolding of the fragment by urea, as followed by difference spectral measurements at
30°C, pH 7.0, occurred in two distinct steps involving at least 3 major conformational states, namely the native (N), intermediate
(X) and completely denatured (D) states. The co-operativity values for the two transitions, N⇌X and X⇌Dwere found to be 4.0
and 16.4, respectively. Analysis of the data on bilirubin binding to bovine serum albumin and its fragment suggested that
the fragment retains significant amount of its native structure. However, hydrodynamic parameters such as Stokes radius (3.f14
nm), diffusion coefficient (6.98 × 10−7cm2/s) and frictional ratio (1.32) obtained by analytical gel chromatography as well as intrinsic viscosity (4.31 ml/g) indicates
some asymmetry in the fragment molecule. 相似文献
14.
Mohd Ishtikhar Anam Khan Chih-Kai Chang Lilian Tsai-Wei Lin Steven S.-S. Wang 《Journal of biomolecular structure & dynamics》2016,34(7):1409-1420
6-thioguanine (6-TG) is an antineoplastic, nucleobase guanine, purine analog drug belongs to thiopurine drug-family of antimetabolites. In the present study, we report an experimental approach towards interaction mechanism of 6-TG with human serum albumin (HSA) and examine the chemical stability of HSA in the presence of denaturants such as guanidine hydrochloride (GdnHCl) and urea. Interaction of 6-TG with HSA has been studied by various spectroscopic and spectropolarimeteric methods to investigate what short of binding occurs at physiological conditions. 6-TG binds in the hydrophobic cavity of subdomain IIA of HSA by static quenching mechanism which induces conformation alteration in the protein structure. That helpful for further study of denaturation process where change in secondary structures causes unfolding of protein that also responsible for severance of domain III from rest of the protein part. We have also performed molecular simulation and molecular docking study in the presence of denaturating agents to determine the binding property of 6-TG and the effect of denaturating agents on the structural activity of HSA. We had found that GdnHCl is more effective denaturating agent when compared to urea. Hence, this study provides straight evidence of the binding mechanism of 6-TG with HSA and the formation of intermediate or unfolding transition that causes unfolding of HSA. 相似文献
15.
Binding of a spin-labelled photoallergen to human serum albumin 总被引:1,自引:0,他引:1
The binding site for 3,3',4',5-tetrachlorosalicylanilide (T4CS), a potent photoallergen, on human serum albumin (HSA) was studied by electron spin resonance spectroscopy using a spin-labelled analogue 3,5-dichlorosalicylamido-4-(2,2,6,6-tetramethylpiperidine 1-oxyl) (DCS-TEMPO) of T4CS in the absence of ultraviolet irradiation. DCS-TEMPO bound non-covalently (K = 5.8 X 10(6) M-1) to one major binding site on HSA. This binding site could be blocked by the photochemical binding of T4CS to the protein. Limited tryptic digestion of HSA or chemical modification of its single tryptophan residue with 2-hydroxy-5-nitrobenzyl bromide was found to reduce the binding constant of the T4CS/DCS-TEMPO-binding site. These observations are in good agreement with earlier conclusions on the nature of the T4CS-binding site and suggest a location for this site close to the single tryptophan residue of the HSA molecule. 相似文献
16.
Basiaga SB Hage DS 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(30):3193-3197
This report examines the use of high-performance affinity chromatography as a screening tool for studying the change in binding by sulfonylurea drugs to the protein human serum albumin (HSA) during diabetes. The effects of both the non-enzymatic glycation of HSA and the presence of fatty acids on these interactions were considered using a zonal elution format. It was found that there was a significant increase (i.e., 2.7- to 3.6-fold) in the relative retention of several sulfonylurea drugs (i.e., acetohexamide, tolbutamide, glybenclamide and gliclazide) on columns containing normal versus glycated HSA. The addition of various long chain fatty acids to the mobile phase gave the same trend in retention for the tested drugs on both the HSA and glycated HSA columns, generally leading to lower binding. Most of the fatty acids examined produced similar or moderately different relative shifts in retention; however, palmitic acid was found to produce a much larger change in retention on columns containing glycated HSA versus normal HSA under the conditions used in this study. 相似文献
17.
Human serum albumin (HSA) is the most prominent protein in plasma, but it is also found in tissues and secretions throughout the body. The three-domain design of HSA provides a variety of binding sites for many ligands, including heme and drugs. HSA has been used as a model multidomain protein to investigate how interdomain interactions affect the global folding/unfolding process. Here, we report on the reversible chemical denaturation of heme-HSA involving three different conformational states (F, N, and B, occurring at pH 4.0, 7.0, and 9.0, respectively) and on the effect of prototypic drugs ibuprofen and warfarin on thermodynamics of the reversible unfolding process. Chaotropic unfolding of heme-HSA in the F, N, and B conformations is governed by different thermodynamic regimes, with the B form showing an entropic stabilization of the structure that compensates an enthalpic destabilization, and the F form easily unfolding under entropic control. Warfarin and ibuprofen binding stabilizes heme-HSA in both N and B states. 相似文献
18.
This study was undertaken to investigate the influence of fatty acid binding on the unfolding of HSA and how the fatty acid molecules can influence and/or compete with other ligand molecules bound to the protein. The equilibrium unfolding of fatted and fatty acid free HSA was measured by overlapping of unfolding transition curves monitored by different probes for secondary and tertiary structure and determining changes in free energy of unfolding. Proteins stability was studied by fluorescence spectroscopy, whereas conformational changes were detected by circular dichroism techniques. We have suggested a "molten globule" like intermediate state of HSA at a fairly high concentration of GnHCl (3.2 for fatty acid free and 3.6 for fatted). The free energy of stabilization (DeltaG(D)(H2O)) in the presence of fatty acid was found to be 900 cal mol(-1). We also analyze the effects of fatty acid on binding of ligands using spectroscopic technique and reported the equilibrium constants and free energies obtained from the binding and unfolding experiments. 相似文献
19.
A solid-phase adsorption method was developed to circumvent the disadvantage of the conventional liquid-phase PEGylation,
i.e. the heterogeneity of the PEGylated products. The model proteins, human serum albumin (HSA) and staphylokinase (SAK),
were adsorbed on the ion exchange chromatography media, followed by PEGylation with succinimidyl carbonate (SC)-mPEG5K and
salt elution. Since PEGylation with SC-PEG5K alters the positive charge of the proteins, Q-Sepharose Big Beads and DEAE Sepharose
Fast Flow were used for adsorption of HSA and SAK, respectively. Size exclusion chromatography and SDS-PAGE studies demonstrated
that solid-phase PEGylation of proteins generate monoPEGylated proteins with the yield of 35–47%. Circular dichroism and intrinsic
fluorescence studies showed that solid-phase PEGylation led to little conformational change of the proteins. Solid-phase PEGylation
resulted in 35% loss in the biological activity of SAK, which is lower than the liquid-phase PEGylation (70%). 相似文献
20.
Siemiarczuk A Petersen CE Ha CE Yang J Bhagavan NV 《Cell biochemistry and biophysics》2004,40(2):115-122
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain
2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin
(HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V,
and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined.
Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A
HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W
and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species
with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were
also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting
the conformational flexibility of subdomain 2A. 相似文献