首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bradykinin (BK) is an important endogenous mediator of microvascular flow modulation. Since the structure of the microcirculation is very different in tumor tissues than in normal tissues, bradykinin may elicit different responses in tumors. This study was designed to test the hypothesis that local administration of bradykinin increases blood flow preferentially in normal tissue relative to adjacent tumor tissue, resulting in a "vascular steal" phenomenon. Microvessel diameters (D), velocities (Vc), length densities, shear rates, and intermittent flow frequencies were measured every 10 min before, during, and after 40 min exposure to BK in rats with dorsal flap window chambers 9 days after tumor implantation. Separate studies were made of normal vessels outside the tumor margin, the hypervascular tumor periphery, and the tumor center. Bradykinin was administered with a suffusion medium flowing over the tissue at 1-2 ml/min with a BK concentration of 1.6 x 10(7) M. Administration of BK created five distinct changes in normal and tumor vessel function that varied over time, but coincidentally reached a maximum effect after 20 min exposure to BK. In normal vessels, increased Vc and D led to increased flow, which reached a peak 20 min after onset of suffusion with BK. In contrast, in centrally located tumor vessels, decreased D and Vc were observed in most vessels during the initial 10-20 min of suffusion. In addition, there was a significant increase in intermittent flow frequency in tumor central vessels, which peaked after 20 min of suffusion with BK. These five separate observations that coincided at 20 min of suffusion are consistent with a "vascular steal" phenomenon. The increase in normal microvessel D and Vc at 20 min suggests that BK causes vasodilation in arterioles. The coincident decrease in tumor microvessel D and Vc suggests that tumor feeding vessels are less able to respond to BK by vasodilating. The concomitant increase in intermittent flow frequency in tumor vessels suggests that a reduction in pressure drop occurred after 20 min exposure to BK, which is also consistent with "vascular steal." Since BK is also known to increase vascular permeability, it is possible that increases in interstitial fluid pressure brought on by exposure to BK contributed to the observed reduction in tumor blood flow. In normal vessels, reduced D and Vc, relative to peak values, were noted after 40 min suffusion with BK. Adherence of leukocytes to the vessel walls was prominent and microthrombi were also observed during this period. No evidence of such adhesion was seen in tumor vessels, although microthrombi were observed.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The effects of light activation of the tumor photosensitizer dihematoporphyrin ether (DHE) were studied in the microcirculation of the rat cremaster muscle. Arterioles and venules in an implanted chondrosarcoma were studied by in vivo television microscopy and were compared to normal vessels of the same size elsewhere in the preparation and in control preparations. Activation with green light (530-560 nm, 200 mW/cm2, 120 J/cm2) 48 h after intraperitoneal injection of DHE (10 mg/kg body wt) resulted in significant narrowing of diameters of red blood cell columns in tumor arterioles and venules. The response in normal and control arterioles and venules was not significantly different from that seen in the tumor vessels except that the control arterioles did not remain significantly constricted during the treatment period. Treatment resulted in stasis of blood flow in 90% of tumor and normal arterioles at the completion of light activation. In venules, stasis of blood flow was observed in 75% of tumor and 70% of normal vessels. Vasoconstriction was the primary response in arterioles, while thrombosis predominated in venules. Morphologic assessment of light-activated vessels in the cremaster preparation by transmission electron microscopy revealed platelet aggregation with damage to endothelial cells and smooth muscle cells. Perivascular effects observed included interstitial edema and damage to skeletal muscle cells. In the tumor-bearing preparation, no direct cytotoxic effect on the tumor cells was shown. The surrounding vessels exhibited similar vascular stasis, but the lining cells appeared minimally affected. Photoactivation of DHE results in significant changes in the microcirculation which lead to stasis of blood flow. In this model, the response was similar for the normal microvasculature and for the microcirculation of an implanted chondrosarcoma. These effects may account, in part, for the mechanism of action of photodynamic therapy.  相似文献   

3.
The apparent viscosity of blood in glass tubes declines with decreasing diameter (F?hraeus-Lindqvist effect) and exhibits a distinctive minimum at 6-7 microm. However, flow resistance in vivo in small vessels is substantially higher than predicted by in vitro viscosity data. The presence of a thick endothelial surface layer (ESL) has been proposed as the primary cause for this discrepancy. Here, a physical model is proposed for microvascular flow resistance as a function of vessel diameter and hematocrit in vivo; it combines in vitro blood viscosity with effects of a diameter-dependent ESL. The model was developed on the basis of flow distributions observed in three microvascular networks in the rat mesentery with 392, 546, and 383 vessel segments, for which vessel diameters, network architecture, flow velocity, and hematocrit were determined by intravital microscopy. A previously described hemodynamic simulation was used to predict the distributions of flow and hematocrit from the assumed model for effective blood viscosity. The dependence of ESL thickness on vessel diameter was estimated by minimizing deviations of predicted values for velocities, flow directions, and hematocrits from measured data. Optimal results were obtained with a layer thickness of approximately 0.8-1 microm for 10- to 40-microm-diameter vessels and declined strongly for smaller diameters, with an additional hematocrit-dependent impact on flow resistance exhibiting a maximum for approximately 10-microm-diameter vessels. These results show that flow resistance in vivo can be explained by in vitro blood viscosity and the presence of an ESL and indicate the rheologically effective thickness of the ESL in microvessels.  相似文献   

4.
Sun C  Munn LL 《Biophysical journal》2005,88(3):1635-1645
Historically, predicting macroscopic blood flow characteristics such as viscosity has been an empirical process due to the difficulty in rigorously including the particulate nature of blood in a mathematical representation of blood rheology. Using a two-dimensional lattice Boltzmann approach, we have simulated the flow of red blood cells in a blood vessel to estimate flow resistance at various hematocrits and vessel diameters. By including white blood cells (WBCs) in the flow, we also calculate the increase in resistance due to white cell rolling and adhesion. The model considers the blood as a suspension of particles in plasma, accounting for cell-cell and cell-wall interactions to predict macroscopic blood rheology. The model is able to reproduce the Fahraeus-Lindqvist effect, i.e., the increase in relative apparent viscosity as tube size increases, and the Fahraeus effect, i.e., tube hematocrit is lower than discharge hematocrit. In addition, the model allows direct assessment of the effect of WBCs on blood flow in the microvasculature, reproducing the dramatic increases in flow resistance as WBCs enter short capillary segments. This powerful and flexible model can be used to predict blood flow properties in any vessel geometry and with any blood composition.  相似文献   

5.
The therapeutic effects of carbon dioxide (CO2) on cutaneous tissue blood flow in the human have long been well recognized. Although CO2 has vasodilator action, in-vivo evidence of its action on the microcirculation of the skin, and of its mechanism, has rarely been reported. We studied the direct effects of CO2 on in-vivo microvasculature and blood flow rate by using an intra-vital video-microscopic system. Brown Norway rats were anesthetized by intraperitoneal administration of alpha-chloralose and urethane. In order to measure inner diameter and red blood cell velocity (Vrbc) for a microvessel, the dorsal skin window was draped on an observation box placed inside a bath. Vrbc was derived from the cross-correlation function of paired segments of dual-window intensity in the video of microvascular images of the subcutaneous tissue. We measured pH in subcutaneous tissue by making a dorsal skin tube. After topical application of CO2 dissolved in water via the skin of the rat, we observed both vasodilatation and an increase in blood flow of the micro vessels. The pH of subcutaneous tissue also decreased after CO2 application. The CO2 reduced the pH of subcutaneous tissue and inhibited vascular smooth muscle contraction, resulting in dilatation of the vasculature of the skin microcirculation.  相似文献   

6.
Pulse wave propagation in the mature rabbit systemic circulation was simulated using the one-dimensional equations of blood flow in compliant vessels. A corrosion cast of the rabbit circulation was manufactured to obtain arterial lengths and diameters. Pulse wave speeds and inflow and outflow boundary conditions were derived from in vivo data. Numerical results captured the main features of in vivo pressure and velocity pulse waveforms in the aorta, brachiocephalic artery and central ear artery. This model was used to elucidate haemodynamic mechanisms underlying changes in peripheral pulse waveforms observed in vivo after administering drugs that alter nitric oxide synthesis in the endothelial cells lining blood vessels. According to our model, these changes can be explained by single or combined alterations of blood viscosity, peripheral resistance and compliance, and the elasticity of conduit arteries.  相似文献   

7.
Arterial adaptations to altered blood flow   总被引:3,自引:0,他引:3  
Arterial remodeling in response to altered blood flow is believed to be critical to vascular adaptations to developmental, physiological, pathological, and therapeutically induced changes in blood flow. To assess this remodeling, we used left-to-right carotid anastomosis to increase blood flow in the right common carotid arteries of adult rabbits by 60%. After 2 months, these vessels exhibited no compensatory enlargement. In contrast, the same procedure performed in 5- to 6-week-old weanling rabbits resulted in accelerated growth of the vessels: diameters exceeded those of control arteries by 19% after 2 months. Common carotid arteries in adult rabbits remodeled to produce a diameter reduced by 23% when blood flow was reduced by 63% by external carotid ligation. This adaptation restored shear stress exerted on the vessel wall to control levels. The reduced diameter was not reversed when the vessels were maximally dilated with nitroprusside, adenosine, and forskolin; however, normal diameters were restored within 1 week when normal blood flows were reestablished. Thus, the adult arteries did not respond to increased blood flow produced by the anastomosis, but this procedure did reverse adaptations to decreased flow. In contrast, immature arteries were responsive to this increase in blood flow, even in the absence of prior flow modulation.  相似文献   

8.
Effects of blood viscosity on renin secretion.   总被引:1,自引:0,他引:1  
S Chien  K M Jan  S Simchon 《Biorheology》1990,27(3-4):589-597
The effects of alterations in blood and plasma viscosities on plasma renin activity (PRA) were studied in dogs anesthetized with pentobarbital. Blood viscosity was altered by changing the hematocrit (Hct) level by isovolemic exchange using packed red blood cells or plasma. Plasma viscosity was elevated by isovolemic exchange using Hct-matched blood with high molecular weight dextran (Dx, mean m.w. approximately 450,000) dissolved in plasma. Following control measurements of plasma and blood viscosities, plasma [Dx], PRA, Hct and hemodynamic functions, the dog was subjected to isovolemic exchange transfusions to either alter the Hct or administer the Dx. Various measurements were repeated 40-60 min after each exchange. Arterial pressure and renal blood flow remained relatively constant after exchanges; increases in plasma and blood viscosities were accompanied by a decrease in renal vascular hindrance (vasodilation) to keep the renal flow resistance at control level. PRA rose with increases in plasma [Dx] and viscosity, and the rise in PRA was best correlated with the decrease in renal hindrance. The changes in PRA and renal hindrance have the same regression line whether blood viscosity was altered by Hct variation or Dx administration. The results indicate that increases in viscosity cause a compensatory vasodilation of renal vessels to cause renin secretion.  相似文献   

9.
The effects of vascular-disrupting treatments on normalization of tumor microvasculature and its microenvironmental flow were investigated, by mathematical modeling and numerical simulation of tumor vascular-disrupting and tumor haemodynamics. Four disrupting approaches were designed according to the abnormal characteristics of tumor microvasculature compared with the normal one. The results predict that the vascular-disrupting therapies could improve tumor microenvironment, eliminate drug barrier and inhibit metastasis of tumor cells to some extent. Disrupting certain types of vessels may get better effects. In this study, the flow condition on the networks with "vascular-disrupting according to flowrate" is the best comparing with the other three groups, and disrupting vessels of lower maturity could effectively enhance fluid transport across vasculature into interstitial space.  相似文献   

10.
Alterations in retinal blood flow can contribute to, or be a consequence of, ocular disease and visual dysfunction. Therefore, quantitation of altered perfusion can aid research into the mechanisms of retinal pathologies. Intravital video microscopy of fluorescent tracers can be used to measure vascular diameters and bloodstream velocities of the retinal vasculature, specifically the arterioles branching from the central retinal artery and of the venules leading into the central retinal vein. Blood flow rates can be calculated from the diameters and velocities, with the summation of arteriolar flow, and separately venular flow, providing values of total retinal blood flow. This paper and associated video describe the methods for applying this technique to mice, which includes 1) the preparation of the eye for intravital microscopy of the anesthetized animal, 2) the intravenous infusion of fluorescent microspheres to measure bloodstream velocity, 3) the intravenous infusion of a high molecular weight fluorescent dextran, to aid the microscopic visualization of the retinal microvasculature, 4) the use of a digital microscope camera to obtain videos of the perfused retina, and 5) the use of image processing software to analyze the video. The same techniques can be used for measuring retinal blood flow rates in rats.  相似文献   

11.
Morphological features of the coronary microvasculature were examined in ten Black bears (Ursus americanus). Tissue samples were collected for scanning electron microscopy from five animals, and vascular casts of the coronary vessels were prepared from five. Each portion of the microvasculature examined had specific morphological characteristics which may contribute to the control of blood flow. All indications from the present study suggest that the structure of the coronary microvasculature in the Black bear is similar to that of mammalian species previously examined.  相似文献   

12.
Intravenous administration of histamine causes an increase in choroidal blood flow and retinal vessel diameter in healthy subjects. The mechanism underlying this effect remains to be elucidated. In the present study, we hypothesized that H2 receptor blockade alters hemodynamic effects of histamine in the choroid and retina. Eighteen healthy male nonsmoking volunteers were included in this randomized, double-masked, placebo-controlled two-way crossover study. Histamine (0.32 microg.kg(-1).min(-1) over 30 min) was infused intravenously in the absence (NaCl as placebo) or presence of the H2 blocker cimetidine (2.3 mg/min over 50 min). Ocular hemodynamic parameters, blood pressure, and intraocular pressure were measured before drug administration, after infusion of cimetidine or placebo, and after coinfusion of histamine. Subfoveal choroidal blood flow and fundus pulsation amplitude were measured with laser-Doppler flowmetry and laser interferometry, respectively. Retinal arterial and venous diameters were measured with a retinal vessel analyzer. Retinal blood velocity was assessed with bidirectional laser-Doppler velocimetry. Histamine increased subfoveal choroidal blood flow (+14 +/- 15%, P < 0.001), fundus pulsation amplitude (+11 +/- 5%, P < 0.001), retinal venous diameter (+3.0 +/- 3.6%, P = 0.002), and retinal arterial diameter (+2.8 +/- 4.2%, P < 0.01) but did not change retinal blood velocity. The H2 antagonist cimetidine had no significant effect on ocular hemodynamic parameters. In addition, cimetidine did not modify effects of histamine on choroidal blood flow, fundus pulsation amplitude, retinal venous diameter, and retinal arterial diameter compared with placebo. The present data confirm that histamine increases choroidal blood flow and retinal vessel diameters in healthy subjects. This ocular vasodilator effect of histamine is, however, not altered by administration of an H2 blocker. Whether the increase in blood flow is mediated via H1 receptors or other hitherto unidentified mechanisms remains to be elucidated.  相似文献   

13.
Angiogenesis within an ischemic region of the brain may increase tissue viability and act to limit the extent of an infarct. The ANG II pathway can both stimulate and inhibit angiogenesis depending on the tissue and the activated receptors. Previous work showed that 2-wk losartan administration (ANG II type 1 receptor blockade) initiates a significant cerebral angiogenic response. We hypothesized that administration of losartan in the drinking water of rats for 2 wk before initiation of focal ischemia would decrease the extent of the resulting infarct. Adult male Sprague-Dawley rats were given losartan (50 mg/day) in drinking water for 2 wk before initiation of cerebral focal ischemia produced by cauterization of cortical surface vessels. Controls received normal drinking water. In control animals, three main vessels feeding the whisker barrel cortex were cauterized, resulting in cessation of blood flow. The same protocol was followed for losartan-treated animals but did not result in cessation of blood flow in the whisker barrel cortex. Another group of losartan-treated animals received between 8 and 14 cauterizations of surface vessels feeding the whisker barrel cortex, and cessation of blood flow was verified. Rats were killed 72 h after surgery. Morphological examination revealed angiogenesis, maintained vascular delivery, and significantly decreased infarct size in losartan-treated animals compared with controls. These results demonstrate that pretreatment with losartan reduces infarct size after cerebral focal ischemia and support the hypothesis that cerebral angiogenesis may be one of the mechanisms responsible.  相似文献   

14.
Flunarizine is a calcium entry blocking drug possessing antihypoxic activity in animal models of cerebral and peripheral ischemia-anoxia and has clinical usefulness in circulatory disorders of both central and peripheral origin. This report compares the activity of flunarizine and verapamil, another calcium entry blocking drug, on the central nervous system (CNS) and peripheral consequences of cytotoxic hypoxia induced by high and low doses of KCN. The lethal effect of KCN (6 mg/kg, i.p.) in rats was prevented by orally administered flunarizine (ED50 = 12 mg/kg with four-hr pretreatment) but not by verapamil (at oral doses up to 80 mg.kg with one-hr pretreatment). Since the lethal effect of KCN involves failure of respiration at the CNS level, these results suggest that flunarizine protects against the hypoxic effect of the cyanide ion by an action in brain tissue. We found also that the stimulant effect of low intravenous doses (0.5 mg/kg/min) of KCN upon respiration rate was not altered in pentobarbital- and chloralose-anesthetized rats treated with oral doses of flunarizine up to 80 mg/kg (with four hr pretreatment). In contrast, KCN-stimulated respiration rate in pentobarbital anesthetized rats was significantly attenuated by verapamil (20 and 40 mg/kg, p.o. with one hr pretreatment). Since low doses of the cyanide ion render respiration quicker and deeper by an action on chemoreceptive cells in peripheral arteries, the effect of verapamil against the hypoxic effect of KCN is mediated by an action in the periphery. In summary, we have shown that the physiological consequences of cytotoxic hypoxia can be affected by calcium entry blocking drugs having site-specific activities. Based on our results, flunarizine is more effective than verapamil against cellular anoxia involving the CNS.  相似文献   

15.
In acute experiments on cats, the gastric vascular bed being perfused under constant blood flow, the actions of gastric vessels was investigated using newly elaborated approach to their humoral isolation. Increased doses of noradrenaline elicited the dose-dependent constrictive response of gastric arterial vessels. Perfusion pressure increase in the gastric vascular bed under action of the minimal dose of noradrenaline was more pronounced, than in the intestinal vessels. The capacity of the gastric vascular bed under action of the drug changed in different manner, mostly increased, but could be decreased as well. In contrast to the small intestine the gastric vessels are characterized by more pronounced action of noradrenaline on blood depoting processes.  相似文献   

16.
In the present study, the effects of photodynamic therapy (PDT) with verteporfin on tumor blood flow and tumor regrowth were compared as verteporfin distributed in different compartments within the RIF-1 tumor. Tissue distribution of verteporfin was examined by fluorescence microscopy, and blood flow measurements were taken with a laser Doppler system. It was found that, at 15 min after drug administration, when verteporfin was mainly confined within the vasculature, PDT induced a complete arrest of blood flow by 6 h after treatment. PDT treatment at a longer drug-light interval (3 h), which allowed the drug to diffuse to the tumor interstitium, caused significantly less flow decrease, only to 50% of the initial flow in 6 h. A histological study and Hoechst 33342 staining of functional tumor vasculature confirmed the primary vascular damage and the decrease in tumor perfusion. The regrowth rate of tumors treated with 15-min interval PDT was 64% of that of the control group. However, when tumors were treated with 3-h interval PDT, the regrowth rate was not significantly different from that of the control, indicating that only the 15-min interval PDT caused serious damage to the tumor vascular bed. These results support the hypothesis that temporal pharmacokinetic changes in the distribution of the photosensitizer between the tumor parenchyma and blood vessels can significantly alter the tumor target of PDT.  相似文献   

17.
Insulin, at physiological concentrations, regulates the volume of microvasculature perfused within skeletal and cardiac muscle. It can also, by relaxing the larger resistance vessels, increase total muscle blood flow. Both of these effects require endothelial cell nitric oxide generation and smooth muscle cell relaxation, and each could increase delivery of insulin and nutrients to muscle. The capillary microvasculature possesses the greatest endothelial surface area of the body. Yet, whether insulin acts on the capillary endothelial cell is not known. Here, we review insulin's actions at each of three levels of the arterial vasculature as well as recent data suggesting that insulin can regulate a vesicular transport system within the endothelial cell. This latter action, if it occurs at the capillary level, could enhance insulin delivery to muscle interstitium and thereby complement insulin's actions on arteriolar endothelium to increase insulin delivery. We also review work that suggests that this action of insulin on vesicle transport depends on endothelial cell nitric oxide generation and that insulin's ability to regulate this vesicular transport system is impaired by inflammatory cytokines that provoke insulin resistance.  相似文献   

18.
The coupling of intravascular and interstitial flow is a distinct feature of tumor microcirculation, due to high vessel permeability, low osmotic pressure gradient and absence of functional lymphatic system inside tumors. We have previously studied the tumor microcirculation by using a 2D coupled model. In this paper, we extend it to a 3D case with some new considerations, to investigate tumor blood perfusion on a more realist microvasculature, and the effects of vascular normalization by anti-angiogenic therapy on tumor microenvironment.The model predict the abnormal tumor microcirculation and the resultant hostile microenvironment: (1) in the intra-tumoral vessels, blood flows slowly with almost constant pressure values, haematocrit is much lower which contributes to hypoxia and necrosis formation of the tumor centre; (2) the total transvascular flux is at the same order of magnitude as intravascular flux, the intravasation appears inside of the tumor, the ratio of the total amount of intravasation flux to extravasation flux is about 16% for the present model; (3) the interstitial pressure is uniformly high throughout the tumor and drops precipitously at the periphery, which leads to an extremely slow interstitial flow inside the tumor, and a rapidly rising convective flow oozing out from the tumor margin into the surrounding normal tissue. The investigation of the sensitivity of flows to changes in transport properties of vessels and interstitium as well as the vascular density of the vasculature, gains an insight into how normalization of tumor microenvironment by anti-angiogenic therapies influences the blood perfusion.  相似文献   

19.
M F Kiani  A G Hudetz 《Biorheology》1991,28(1-2):65-73
A semi-empirical model is developed to describe the dependence of apparent viscosity of blood on vessel diameter (2.7 to 500 microns) and vessel discharge hematocrit (5% to 60%). The blood flow is modeled as a cell-rich core and a cell-free marginal layer in the larger vessels and an axial-train in the smaller vessels. Laminar (Poiseuille) flow is assumed in all cases. An equation is derived in which apparent viscosity is a function of vessel diameter, core viscosity, and width of marginal layer. This is then complemented by empirical equations in which core viscosity varies exponentially with discharge hematocrit while the width of marginal layer varies linearly with discharge hematocrit. The model correlates well with several sets of experimental data and behaves according to the Fahraeus-Lindqvist effect. Predicted apparent viscosity tends to the expected finite value for large vessel diameters. Dependence of apparent viscosity on vessel diameter is realistically smooth in the whole diameter range.  相似文献   

20.
Pikamilon was shown to increase blood supply in cerebral cortex in conscious rats and rabbits. The increase in blood flow has been revealed under intravenous, intraperitoneal and systemic administration of the drug. There is a pronounced dilatation of pial arterioles under pikamilon action while applied locally. Most dilation occurs in arterioles with the initial diameter of 10-20 microns. With the increase of pial arterioles diameter, dilatory effect of pikamilon, is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号