首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Quorum sensing affects the regulation of more than 300 genes in Pseudomonas aeruginosa, influencing growth, biofilm formation, and the biosynthesis of several products. The quorum sensing regulation mechanisms are mostly described in a qualitative character. Particularly, in this study, the kinetics of N-butyryl-homoserine lactone (C4-HSL) and rhamnolipid formation in P. aeruginosa PAO1 were of interest. In this system, the expression of the rhamnolipid biosynthesis genes rhlAB is directly coupled to the C4-HSL concentration via the rhl system. Batch cultivations in a bioreactor with sunflower oil have been used for these investigations. 3-oxo-dodecanoyl-homoserine lactone (3o-C12-HSL) displayed a lipophilic character and accumulated in the hydrophobic phase. Degradation of C4-HSL has been found to occur in the aqueous supernatant of the culture by yet unknown extracellular mechanisms, and production was found to be proportional to biomass concentration rather than by autoinduction mechanisms. Rhamnolipid production rates, as determined experimentally, were shown to correlate linearly with the concentration of autoinducer C4-HSL. These findings were used to derive a simple model, wherein a putative, extracellular protein with C4-HSL degrading activity was assumed (putative C4-HSL acylase). The model is based on data for catalytic efficiency of HSL-acylases extracted from literature (k cat/K m), experimentally determined basal C4-HSL production rates (q C4?-?HSL basal), and two fitted parameters which describe the formation of the putative acylase and is therefore comparatively simple.  相似文献   

4.
N-acylhomoserine lactone (AHSL, autoinducer) is capable of regulating a set of genes by sensing cell density and developing an intercellular communication in Pseudomonas aeruginosa. Addition of AHSL in the exponential growth phase, regardless of cell density, induces a repression of cell growth of P. aeruginosa, an expression of stationary phase specific factor σs in vivo and a morphological change into smaller spherical shape indistinguishable from that in the stationary phase. It is demonstrated that AHSL can trigger an entry of bacteria into stationary phase as a growth controlling signal.  相似文献   

5.
6.
The human pathogen Vibrio cholerae uses several small molecules to coordinate gene expression in a process termed quorum sensing (QS), and its main autoinducer is CAI-1. We have examined the activity of this signaling molecule in three other species of bacteria. Interestingly, while showing an inhibitory effect on QS in the opportunistic pathogen P. aeruginosa at low micromolar concentrations, it caused also growth inhibition at higher concentrations. In contrast, the two other bacteria were unaffected, and we suggest a possible mechanism for these effects, based on membrane perturbation studies.  相似文献   

7.
An inhibitor was found in the culture fluid of Pseudomonas aeruginosa PAO1, which could inhibit the activity of the Pseudomonas autoinducer (PAI). The maximal inhibitory activity occurred in stationary phase culture sup ernatant. The PAI inhibitor did not influence the cell growth and the PAI production by P. aeruginosa PAO1 when the PAI inhibitor was added into culture medium. The induced expression of lacZ in the reporter strain Agrobacterium tumefaciens NT1 was suppressed by this PAI inhibitor, whereas inhibition could be relieved by increasing the auto inducer concentration. The quorum sensing of P. aeruginosa was inhibited presumably by inhibiting the inducing activity of Pseudomonas autoinducer but not by inhibiting the production of Pseudomonas autoinducer. It was demonstrated that the structure of the PAI inhibitor was different from that of acyl-homoserine lactones.  相似文献   

8.
The Pseudomonas aeruginosa type III secretion system (TTSS), enabling direct injection of toxins into host cells, has been shown to be crucial to virulence in several models of P. aeruginosa pathogenesis. Using the strain PA14 and its isogenic mutant, PA14exsA, we investigated the role of the TTSS during infection of the nematode Caenorhabditis elegans. Although C. elegans N2 was killed by PA14 in an infection like process over 48 to 72 h the same effect was observed following infection with PA14exsA, implying that a functional TTSS was not essential for virulence. This was despite the TTSS being actively expressed during C. elegans infection as demonstrated by the use of green fluorescent reporter constructs and RT-PCR. However, compared to the wild type PA14, PA14exsA did display a reduced rate of killing of C. elegans strain AU1 which harbours a mutation in the sek-1 gene encoding a MAP kinase involved in nematode innate immunity. A fuller understanding of the mechanism of resistance to type III attack in C. elegans may lead to the identification and development of novel therapeutic targets affording protection to TTSS products in man.  相似文献   

9.
10.
11.
Pseudomonas aeruginosa is a gram-negative bacterium that causes serious illnesses, particularly in immunocompromised individuals, often with a fatal outcome. The finding that the acylated homoserine lactone quorum sensing (QS) system controls the production of virulence factors in P. aeruginosa makes this system a possible target for antimicrobial therapy. It has been suggested that an N-(3-oxododecanoyl)-homoserine lactone (3O-C12-HSL) antagonist, a QS blocker (QSB), would interfere efficiently with the quorum sensing system in P. aeruginosa and thus reduce the virulence of this pathogen. In this work, a mathematical model of the QS system in P. aeruginosa has been developed. The model was used to virtually add 3O-C12-HSL antagonists that differed in their affinity for the receptor protein and for their ability to mediate degradation of the receptor. The model suggests that very small differences in these parameters for different 3O-C12-HSL antagonists can greatly affect the success of QSB based inhibition of the QS system in P. aeruginosa. Most importantly, it is proposed that the ability of the 3O-C12-HSL antagonist to mediate degradation of LasR is the core parameter for successful QSB based inhibition of the QS system in P. aeruginosa. Finally, this study demonstrates that QSBs can shift the system to a low steady state, corresponding to an uninduced state and thus, suggests that the use of 3O-C12-HSL antagonists may constitute a promising therapeutic approach against P. aeruginosa involved infections.  相似文献   

12.
13.
14.
15.
为探讨铜绿假单胞菌 PAO1 中 lasR 和 rhlR 基因表达产物的分子生物学特性,研究它们对铜绿假单胞菌生物被膜形成的影响以及对小鼠的免疫保护效果,采用聚合酶链式反应 (PCR) 方法扩增铜绿假单胞菌标准株 PAO1 中的 lasR 和 rhlR 基因,全自动荧光测序仪测序,并用 Blast 方法检测克隆片段. 利用 pGEX4T-1 载体分别构建 lasR/rhlR-pGEX4T-1 重组质粒,在大肠杆菌 BL21(DE3)中诱导表达,并经过免疫印迹实验验证其生物学活性. 用硅胶膜培养法建立生物被膜模型,诱导转入了pGFPuv 质粒的铜绿假单胞菌 PAG0305 形成生物被膜,并测定 LasR 蛋白和 RhlR 蛋白对生物被膜形成的影响. 同时用纯化的重组蛋白免疫小鼠,菌落计数法检测免疫组和对照组鼠肺对铜绿假单胞菌的清除率. 以 PAO1 染色体 DNA 为模板的 PCR 结果显示,lasR 的全基因序列为 720 bp,rhlR 基因序列为 726 bp,经序列分析和同源性比较分别与 GenBank 中 lasR/rhlR 基因(登录号:M59425; AE004768) 的同源性为 100%. 大肠杆菌 BL21 (DE3) 分别转化重组质粒 lasR/rhlR-pGEX4T-1 后,经 IPTG诱导和 SDS- 聚丙烯酰胺凝胶电泳分析,表达的融合蛋白分子质量均为 54 ku 左右,与预期蛋白质分子质量相同. 荧光显微镜观察和测定结果表明,在硅胶膜上 PAG0305 能够形成典型的发荧光的生物被膜,LasR 或 RhlR 蛋白 (10 mg/L) 存在的情况下,PAG0305 生物被膜的形成速度在前三天比对照组平均提高 40.77%,而且两蛋白单独存在与同时存在时的作用相同. 体内实验中,免疫小鼠肺部对铜绿假单胞菌的清除率显著高于未经免疫的正常组 (P < 0.05). 上述结果表明:构建的lasR/rhlR-pGEX4T-1 重组质粒能够在大肠杆菌 BL21(DE3)中成功地表达并具有生物学活性. LasR/RhlR 蛋白在体外模型中能够加快铜绿假单胞菌生物被膜的形成速度,是调节铜绿假单胞菌生物被膜形成的重要因素之一. 免疫结果表明,重组蛋白对小鼠表现出一定的保护作用,这为进一步开展疫苗研究奠定了基础.  相似文献   

16.
17.
MrtR, a LuxR homolog in Mesorhizobium tianshanense, is important for symbiosis. We found that MrtR requires its cognate N-acylhomoserine lactone for forming dimers, binding to a single DNA site and activating the downstream promoter. However, MrtR is able to fold independently of its ligand.  相似文献   

18.
19.
20.
Pseudomonas aeruginosa responds to phosphate limitation by inducing the expression of phosphate transport systems, phosphatases, hemolysins and a DNase, many of which are important for virulence. Here we report that under phosphate-limiting conditions, P. aeruginosa produces a phosphate-free ornithine lipid (OL) as the primary membrane lipid. The olsBA (PA4350-PA4351) genes were highly induced under phosphate-limiting conditions. The production and structure of the OL was confirmed by MS, revealing diagnostic fragment ions and mainly C16 : 0 and C18 : 1 dialkyl chains. It was shown that olsA is required for production of these lipids and genetic complementation of the olsA∷lux mutant restored OL production. Studies in other bacteria have correlated increased resistance to antimicrobial peptides with the production of OLs. Here it was demonstrated that resistance to antimicrobial peptides increased under phosphate-limiting conditions, but OLs were not required for this increased resistance. OL production was also not required for virulence in the Caenorhabditis elegans infection model. The production of OLs is a strategy to reduce phosphate utilization in the membrane, but mutants unable to produce OLs have no observable phenotype with respect to growth, antibiotic resistance or virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号