首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyricularia oryzae produced toxin(s) during spore germination which induced susceptibility to infection by non-pathogenic Alternaria alternata of rice leaves. The induced susceptibility was independent of the compatibility between the races of blast fungi used for obtaining the toxin(s) and the rice cultivars used for bioassay. Susceptibility was also induced in other susceptible species (e.g. barley, Italian ryegrass, perennial ryegrass and wheat), results suggesting that the toxin(s) are host-selective and determine the host specificity at plant species level.  相似文献   

2.
An restriction fragment length polymorphism (RFLP)-based genetic map of ryegrass (Lolium) was constructed for comparative mapping with other Poaceae species using heterologous anchor probes. The genetic map contained 120 RFLP markers from cDNA clones of barley (Hordeum vulgare L.), oat (Avena sativa L.), and rice (Oryza sativa L.), covering 664 cM on seven linkage groups (LGs). The genome comparisons of ryegrass relative to the Triticeae, oat, and rice extended the syntenic relationships among the species. Seven ryegrass linkage groups were represented by 10 syntenic segments of Triticeae chromosomes, 12 syntenic segments of oat chromosomes, or 16 syntenic segments of rice chromosomes, suggesting that the ryegrass genome has a high degree of genome conservation relative to the Triticeae, oat, and rice. Furthermore, we found ten large-scale chromosomal rearrangements that characterize the ryegrass genome. In detail, a chromosomal rearrangement was observed on ryegrass LG4 relative to the Triticeae, four rearrangements on ryegrass LGs2, 4, 5, and 6 relative to oat, and five rearrangements on ryegrass LGs1, 2, 4, 5, and 7 relative to rice. Of these, seven chromosomal rearrangements are reported for the first time in this study. The extended comparative relationships reported in this study facilitate the transfer of genetic knowledge from well-studied major cereal crops to ryegrass.  相似文献   

3.
Rhizoctonia solani is a necrotrophic fungal pathogen that causes disease on many crop-plant species. Anastomosis group 1-IA is the causal agent of sheath blight of rice (Oryza sativa L.), one of the most important rice diseases worldwide. R. solani AG1-IA produces a necrosis-inducing phytotoxin and rice cultivar’s sensitivity to the toxin correlates with disease susceptibility. Unlike genetic analyses of sheath blight resistance where resistance loci have been reported as quantitative trait loci, phytotoxin sensitivity is inherited as a Mendelian trait that permits high-resolution mapping of the sensitivity genes. An F2 mapping population derived from parent cultivars ‘Cypress’ (toxin sensitive) and ‘Jasmine 85’ (toxin insensitive) was used to map Rsn1, the necrosis-inducing locus. Initial mapping based on 176 F2 progeny and 69 simple sequence repeat (SSR) markers located Rsn1 on the long arm of chromosome 7, with tight linkage to SSR marker RM418. A high-resolution genetic map of the region was subsequently developed using a total of 1,043 F2 progeny, and Rsn1 was mapped to a 0.7 cM interval flanked by markers NM590 and RM418. Analysis of the corresponding 29 Kb genomic sequences from reference cultivars ‘Nipponbare’ and ‘93-11’ revealed the presence of four putative genes within the interval. Two are expressed cytokinin-O-glucosyltransferases, which fit an apoptotic pathway model of toxin activity, and are individually being investigated further as potential candidates for Rsn1.  相似文献   

4.
The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The significance of light irradiation in neerosis formation by Magnaporthe grisea toxin(s) on rice cv. Sekiguchi-asahi was investigated. The effective wave region for light-dependent neerosis formation was 400 700 nm. An absorption band of the toxin(s) was restricted to the wave region shorter than 400 nm. Both of the phytosynthesis and necrosis formation were inhibited by photosynthetic inhibitors, and the inhibition of both activities was dependent on concentration of the inhibitors. The necrosis formation by the toxin(s) depended on light intensity. The toxin(s) induced the necrosis formation only on the cells with many chloroplasts, and the cells without chloroplasts did not form necrosis even under the light with sufficient intensity. The more the number of chloroplasts decreased, the more the size of necrotic spot decreased on the leaf sheath. From these results we concluded that the photosynthetic activity was involved in the necrosis formation by Magnaporthe grisea toxin(s) in rice cv. Sekiguchi-asahi.  相似文献   

6.
6-Methoxy-2-benzoxazolinone (MBOA) inhibited germination of rice (Oryza sativa L.), wheat (Triticum aethiopicum Jakubz), rye (Secale cereale L.), onion (Allium cepa L.), wild oat (Avena fatua L.), barnyard grass [Echinochloa crus-galli (L.) Beauv.], ryegrass (Lolium rigidum Gaudin), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), tomato (Lycopersicum esculentum Mill.), carrot (Daucus carota L.) and amaranth (Amaranthus retroflexus L) and the inhibition increased with increasing MBOA concentrations. MBOA also inhibited the induction of α-amylase in these plant seeds and the inhibition increased with increasing MBOA concentrations. There were variations in sensitivity of these plant species to MBOA, and species of family Poaceae (barnyard grass, wild oat, rice, rye, ryegrass, and wheat) were less sensitive to MBOA than the other plant species.  相似文献   

7.
Rye (Secale cereale L.), wheat (Triticum aestivum L.), and annual ryegrass (Lolium multiflorum Lam.) are commonly double cropped with soybean (Glycine max L.). Recent greenhouse studies have shown variability in plant-parasitic nematode response to cool season grass species and cultivars. However, subsequent soybean performance was not affected by previous annual ryegrass cultivar in the green-house. The objective of this research was to determine whether winter cover crop species or cultivars affected nematode populations and subsequent performance of soybean in teh field. Four cultivars of annual ryegrass, wheat, and rye, and a fallow control were seeded on a Suffolk sandy loam (fine-loamy, siliceous, thermic Typic Hapuldult) soil in each of three years. Nematode-susceptible soybeans were seeded following forage removal. Soil samples for nematode counts were taken immediately before soybean harvest each year. In another experiment, one cultivar each of annual ryegrass, wheat, and rye, and a fallow control were followed by three soybean cultivars selected for differing nematode susceptibility. Grass cultivars did not affect nematode populations under succedding soybean. The only nematodes affected by grass species in either experiment were Pratylenchus spp., Heterodera glycines Ichinohe, and Tylenchorhynchus claytoni (Kofoid and White) Chitwood. Nematode population means were usually low following ryegrass and high following the fallow control. High soybean yields followed the fallow control, and low soybean yields followed annual ryegrass.  相似文献   

8.
A greenhouse study compared oviposition preference and larval development duration of a stem borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), on rice, Oryza sativa L. cv Cocodrie (Poaceae), and four primary non‐crop hosts of Texas Gulf Coast rice agroecosystems. Rice and two perennials, johnsongrass, Sorghum halepense (L.) Pers., and vaseygrass, Paspalum urvillei Steud. (both Poaceae), were assessed at three phenological stages. Two spring annuals, brome, Bromus spec., and ryegrass, Lolium spec. (both Poaceae), were assessed at two phenological stages. Phenological stages represented the diversity of plant development stages E. loftini may encounter. Plant fresh biomass, dry biomass, and sum of tiller heights were used as measures of plant availability. Accounting for plant availability, rice was preferred over non‐crop hosts, and intermediate and older plants were preferred over young plants. Johnsongrass and vaseygrass were 32–60% as preferred as rice when considering the most preferred phenological stages of each host. Brome and ryegrass received few or no eggs, respectively. Eoreuma loftini larval development (in degree days above developmental threshold temperatures) was fastest on rice and slowest on johnsongrass and vaseygrass. Development duration was only retarded by plant stage on young rice plants. Foliar and stem free amino acid concentrations were determined to help provide insights on the mechanisms of E. loftini oviposition preference and developmental performance.  相似文献   

9.
The effects of the phyotoxin from the fungal pathogen Rhizoctonia solani, causing sheath blight on the expression of defense‐related proteins of rice were investigated. The toxin inactivated by chemical treatment and by the toxin‐inactivating enzyme α‐glucosidase produced by Trichoderma viride was used in the study along with the active toxin. Toxin inactivated by T. viride α‐glucosidase and sodium periodate caused significantly less damage and electrolyte leakage to test plants. The active toxin and the pathogen induced chitinase and ß‐1,3‐glucanase synthesis in rice plants, while the inactivated toxin did not have any effect on the expression of these pathogenesis‐related proteins. The toxin was found to suppress the peroxidase activity 72 h after inoculation and the inactivated toxin restored the activity as that of untreated plants. There was no remarkable change in phenylalanine ammonia lyase activity in rice sheath treated with both the forms of the toxin.  相似文献   

10.
QTL mapping of resistance to gray leaf spot in ryegrass   总被引:2,自引:0,他引:2  
Gray leaf spot (GLS) is a serious fungal disease caused by Magnaporthe grisea, recently reported on perennial ryegrass (Lolium perenne L.), an important turfgrass and forage species. This fungus also causes rice blast and many other grass diseases. Rice blast is usually controlled by host resistance, but durability of resistance is a problem. Little GLS resistance has been reported in perennial ryegrass. However, greenhouse inoculations in our lab using one ryegrass isolate and one rice-infecting lab strain suggest presence of partial resistance. A high density linkage map of a three generation Italian × perennial ryegrass mapping population was used to identify quantitative trait loci (QTL) for GLS resistance. Potential QTL of varying effect were detected on four linkage groups, and resistance to the ryegrass isolate and the lab strain appeared to be controlled by different QTL. Of three potential QTL detected using the ryegrass isolate, the one with strongest effect for resistance was located on linkage group 3 of the MFB parent, explaining between 20% and 37% of the phenotypic variance depending on experiment. Another QTL was detected on linkage group 6 of the MFA parent, explaining between 5% and 10% of the phenotypic variance. The two QTL with strongest effect for resistance to the lab strain were located on linkage groups MFA 2 and MFB 4, each explaining about 10% of the phenotypic variance. Further, the QTL on linkage groups 3 and 4 appear syntenic to blast resistance loci in rice. This work will likely benefit users and growers of perennial ryegrass, by setting the stage for improvement of GLS resistance in perennial ryegrass through marker-assisted selection.  相似文献   

11.
A better understanding of genomic features influencing the location of meiotic crossovers (CO s) in plant species is both of fundamental importance and of practical relevance for plant breeding. Using CO positions with sufficiently high resolution from four plant species [Arabidopsis thaliana , Solanum lycopersicum (tomato), Zea mays (maize) and Oryza sativa (rice)] we have trained machine‐learning models to predict the susceptibility to CO formation. Our results show that CO occurrence within various plant genomes can be predicted by DNA sequence and shape features. Several features related to genome content and to genomic accessibility were consistently either positively or negatively related to CO s in all four species. Other features were found as predictive only in specific species. Gene annotation‐related features were especially predictive for maize, whereas in tomato and Arabidopsis propeller twist and helical twist (DNA shape features) and AT /TA dinucleotides were found to be the most important. In rice, high roll (another DNA shape feature) and low CA dinucleotide frequency in particular were found to be associated with CO occurrence. The accuracy of our models was sufficient for Arabidopsis and rice (area under receiver operating characteristic curve, AUROC  > 0.5), and was high for tomato and maize (AUROC  ? 0.5), demonstrating that DNA sequence and shape are predictive for meiotic CO s throughout the plant kingdom.  相似文献   

12.
Changes in the activity of superoxide dismutase (SOD) in rice in response to treatment with Rhizoctonia solani toxin and/or R. solani elicitor were studied. Treatment of rice leaf sheaths with R. solani-toxin significantly increased the SOD activity within 12?h and the maximum enzyme activity was detected 36?h after treatment at which period a fourfold increase in SOD activity was recorded compared to control plants. Isozyme analysis indicated that five new SOD isozymes (SOD-1, SOD-3, SOD-6, SOD-7 and SOD-8) were induced in rice 1?–?2 days after toxin treatment. In elicitor-treated rice leaf sheaths, SOD-2 increased in activity 1?–?5 days after treatment. Pretreatment of rice leaf sheaths with elicitor suppressed the toxin-induced accumulation of SOD.  相似文献   

13.
Perennial ryegrass (Lolium perenne L.) is a preferred choice for the turf grass industry due to its ability to provide a durable turf cover. Genetic or physical contamination of annual (L. multiflorum Lam.) or intermediate (L. hybridum) ryegrass species in perennial ryegrass is one of the major problems affecting the grass seed industry. At present, seedling root fluorescence (SRF), a biochemical marker, is used for the detection of annual ryegrass contamination. Due to the unreliability of the SRF test, the seed industry is seeking an alternative, more reliable and accurate detection method. Currently, there are no DNA tests available in ryegrass for detecting contamination with annual and intermediate ryegrass types. We developed a novel quantitative polymerase chain reaction (Q-PCR)-based DNA test for the detection of annual and/or intermediate ryegrass types in perennial ryegrass. This DNA test was designed using an insertion/deletion (InDel) site in the LpVRN2_2 (Vernalization 2) gene, which is one of the several genes controlling vernalization in ryegrass. The new DNA test is more reliable, accurate and cost-effective in detecting contamination, with a high sensitivity of 0.04% in a sample size of 5,000 seeds. Use of larger sample sizes (12.5-fold higher compared to SRF test) provided additional accuracy in detecting the level of contamination. The method has produced consistent results in 68 perennial, 26 annual and 14 intermediate ryegrass lines.  相似文献   

14.
Cereal crops such as maize and rice are considered attractive for vaccine production and oral delivery. Here, we evaluated the rice Oryza sativa for production of As16—an antigen protective against the roundworm Ascaris suum. The antigen was produced as a chimeric protein fused with cholera toxin B subunit (CTB), and its expression level in the endosperm reached 50 μg/g seed. Feeding the transgenic (Tg) rice seeds to mice elicited an As16-specific serum antibody response when administered in combination with cholera toxin (CT) as the mucosal adjuvant. Although omitting the adjuvant from the vaccine formulation resulted in failure to develop the specific immune response, subcutaneous booster immunization with bacterially expressed As16 induced the antibody response, indicating priming capability of the Tg rice. Tg rice/CT-fed mice orally administered A. suum eggs had a lower lung worm burden than control mice. This suggests that the rice-delivered antigen functions as a prophylactic edible vaccine for controlling parasitic infection in animals.  相似文献   

15.
Six mixed species, perennial pastures at two locations, A (four pastures) and B (two pastures), were sampled at regular intervals over periods of 10 to 22 months. The predominant plant species present were white clover (Trifolium repens), perennial ryegrass (Lolium perenne) and kikuyu grass (Pennisetum clandestinum). To determine the extent to which incidences of viruses transmitted in different ways change in the same pastures over time, samples of each plant species were taken at random on every visit and tested for virus presence. To help identify factors that might explain changes in virus incidence, records were also made of aphid presence, pasture management practices, grazing regimes, sward height and the relative proportions of different plant species within the swards. Samples of white clover were tested for presence of Alfalfa mosaic virus (AMV) and White clover mosaic virus (WCMV), ryegrass for Barley yellow dwarf virus (BYDV) and Ryegrass mosaic virus (RyMV), and kikuyu grass for BYDV and potyvirus infection. AMV and WCMV were detected in white clover, and BYDV and RyMV in ryegrass at both locations but often with wide incidence fluctuations for the individual viruses. AMV incidences in white clover ranged from 0% to 19% at A, and from 27% to 100% at B. WCMV incidences in white clover fluctuated between 9% and 46% at B, but never exceeded 1% at A. RyMV incidences in ryegrass fluctuated between 3% and 34% at A, and 19% and 73% at B. BYDV incidences in ryegrass ranged from 0% to 6% at A and 4% to 17% at B. In kikuyu grass, an unknown potyvirus and BYDV were detected twice (1% incidence) and once (4% incidence) respectively at B, and the unknown potyvirus only once (2% infection) at A. During repeated trapping of aphids in four pastures (two each at A and B), numbers of aphids caught varied widely between trapping dates and between individual pastures on the same trapping date. The species caught were Acyrthosiphon kondoi, A. pisum, Aphis craccivora, Rhopalosiphum padi and Therioaphis trifolii. Except in summer, when only T. trifolii was caught, A. craccivora was the most abundant. The trends in incidence for each virus within each pasture were compared with those from the other pastures sampled over identical periods to determine whether there was any commonality. For RyMV in ryegrass, overall incidence trends within the different pastures at both locations resembled each other during the same sampling periods. Within pastures at the same location there was commonality in incidence trends for RyMV and BYDV in ryegrass, but with AMV in white clover periods of similarity were rare even when pastures were adjacent and managed identically. Unravelling the individual effects of alterations in season, vector numbers, mowing, intermittent heavy grazing and pasture species composition on virus incidence proved difficult due to complex interactions between these and other factors influencing new spread or declining virus occurrence.  相似文献   

16.
ARGONAUTE (AGO) proteins play crucial roles in plant defence against virus invasion. To date, the role of OsAGO2 in rice antiviral defence remains largely unknown. In this study, we determined that the expression of OsAGO2 in rice was induced upon rice black-streaked dwarf virus (RBSDV) infection. Using transgenic rice plants overexpressing OsAGO2 and Osago2 mutants generated through transposon-insertion or CRISPR/Cas9 technology, we found that overexpression of OsAGO2 enhanced rice susceptibility to RBSDV infection. Osago2 mutant lines exhibited strong resistance to RBSDV infection through the elicitation of an early defence response, including reprogramming defence gene expression and production of reactive oxygen species (ROS). Compared to Nipponbare control, the expression level of OsHXK1 (HEXOKINASE 1) increased significantly, and the methylation levels of its promoter decreased in the Osago2 mutant on RBSDV infection. The expression profile of OsHXK1 was the opposite to that of OsAGO2 during RBSDV infection. Overexpression of OsHXK1 in rice also induced ROS production and enhanced rice resistance to RBSDV infection. These results indicate that OsHXK1 controls ROS accumulation and is regulated by OsAGO2 through epigenetic regulation. It is noteworthy that the Osago2 mutant plants are also resistant to southern rice black-streaked dwarf virus infection, another member of the genus Fijivirus. Based on the results presented in this paper, we conclude that OsAGO2 modulates rice susceptibility to fijivirus infection by suppressing OsHXK1 expression, leading to the onset of ROS-mediated resistance. This discovery may benefit future rice breeding programmes for virus resistance.  相似文献   

17.
Researchers examining the mechanisms of ichthyotoxicity of Pfiesteria shumwayae have come to different conclusions about the role of toxin in this process. Some attribute fish mortality solely to direct attack by these pedunculate dinoflagellates on exposed fish tissue while others have provided evidence for a role of a soluble toxin. Detection of toxin, especially in low concentrations, is a function of the sensitivity of the selected bioassay methods and the various groups addressing this question have utilized different methods. One notable difference in fish bioassay methods utilized to detect Pfiesteria-associated toxin (PfTx) is the species of fish tested. Studies that have not detected PfTx in bioassays generally have used Cyprinodon variegatus (sheepshead minnow) as the test fish while those that have detected toxin generally used Oreochromis spp. (Tilapia). In this study response of these two fish species was compared to determine their relative sensitivity to physical attack by P. shumwayae and to PfTx. The results indicate that Oreochromis niloticus is more susceptible to P. shumwayae and its associated toxin than C. variegatus and implicate differences in the ability these species to osmoregulate as a contributing factor for this phenomenon. Salinity stress enhanced susceptibility of O. niloticus to PfTx and thus improved the sensitivity of the bioassay. The observation that salinity stress enhances toxicity to O. niloticus provides additional information regarding the mechanism of PfTx toxicity although the conditions utilized are not representative of the natural habitat of these freshwater fish.  相似文献   

18.
Tall fescue EST-SSR markers with transferability across several grass species   总被引:26,自引:0,他引:26  
Tall fescue (Festuca arundinacea Schreb.) is a major cool season forage and turf grass in the temperate regions of the world. It is also a close relative of other important forage and turf grasses, including meadow fescue and the cultivated ryegrass species. Until now, no SSR markers have been developed from the tall fescue genome. We designed 157 EST-SSR primer pairs from tall fescue ESTs and tested them on 11 genotypes representing seven grass species. Nearly 92% of the primer pairs produced characteristic simple sequence repeat (SSR) bands in at least one species. A large proportion of the primer pairs produced clear reproducible bands in other grass species, with most success in the close taxonomic relatives of tall fescue. A high level of marker polymorphism was observed in the outcrossing species tall fescue and ryegrass (66%). The marker polymorphism in the self-pollinated species rice and wheat was low (43% and 38%, respectively). These SSR markers were useful in the evaluation of genetic relationships among the Festuca and Lolium species. Sequencing of selected PCR bands revealed that the nucleotide sequences of the forage grass genotypes were highly conserved. The two cereal species, particularly rice, had significantly different nucleotide sequences compared to the forage grasses. Our results indicate that the tall fescue EST-SSR markers are valuable genetic markers for the Festuca and Lolium genera. These are also potentially useful markers for comparative genomics among several grass species.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   

19.
Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers.  相似文献   

20.
  1. To manage biological invasions effectively, the impacts of alien species on the demography and traits of native species must be known, but determining those impacts can be challenging. We used a comparative approach to gain insight into the impacts that an alien toad (Bufo japonicus formosus) might have on native Japanese predatory amphibians. We compared the susceptibility of native predator species to alien toad toxins in the alien-invaded range and the susceptibility of closely related native predator species to the toxins in the alien toad's native range to investigate the impacts of an alien on a native species.
  2. Bufo japonicus formosus is native to Honshu, but was recently introduced to Hokkaido and Sado. In laboratory experiments, we compared individual mortality of predators exposed to a toad hatchling between novel predators on the toad-invaded islands and ecologically similar congeneric or conspecific species on Honshu, where the toad is native. We also compared (1) the percentage of individuals that consumed a toad hatchling and (2) toxin resistance (i.e. survival and growth of individuals after toad consumption) between these two groups of predators, as mechanistic components behind the susceptibility of the predators to the toxic prey.
  3. The mortality of Rana pirica from all populations after consumption of a toad hatchling was almost 100%, and that of Hynobius retardatus ranged from 14 to 90%, depending on the population. In contrast, the mortality of Rana ornativentris and Hynobius nigrescens was near 0% regardless of population. These differences between congeneric predators were mostly due to differences in their toxin resistance.
  4. These results suggest that the alien toad is a potential threat to the novel amphibian predators on Hokkaido, although they also imply that the novel predators on Hokkaido have the potential to develop toxin resistance through adaptive evolution. However, this counteradaptation may have a higher chance of evolving in H. retardatus than in R. pirica because of differences in their genetic backgrounds.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号