首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular membrane fusion   总被引:4,自引:0,他引:4  
  相似文献   

2.
Intracellular membrane fusion   总被引:7,自引:0,他引:7  
Protein trafficking and membrane assembly are accomplished in eukaryotes by the specific targeting and fusion of vesicles. In this review we describe some of the molecules implicated as components of the fusion apparatus, and evidence that suggests the same factors are recruited for a variety of intracellular fusion events.  相似文献   

3.
4.
5.
6.
Possible mechanism of membrane fusion   总被引:6,自引:0,他引:6  
M M Kozlov  V S Markin 《Biofizika》1983,28(2):242-247
The stalker mechanism of membrane fusion was considered. Initiation and evolution of monolayer and bilayer bridges-stalks between the membranes were studied. From the expression of elastic energy of the stalk the value of spontaneous curvature of its membrane Ks at which the bridge may appear, was found. It was shown that in terms of the stalker mechanism formation of the stalk of the final radius or complete fusion were possible Ks values for realizing this or that variant were found. The energetic barrier of hydrophobic interaction and the barrier of elastic energy which the membranes had to overcome for stalker formation were found. The experimental data on the fusion of small and large liposomes were analysed.  相似文献   

7.
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both α-helical as well as β-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.  相似文献   

8.
Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell–cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide–membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.  相似文献   

9.
Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.  相似文献   

10.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

11.
Substantial progress has been made in recent years to augment the current understanding of structures and interactions that promote viral membrane fusion. This progress is reviewed with a particular emphasis on recently determined structures of viral fusion domains and their interactions with lipid membranes. The results from the different structural and thermodynamic experimental approaches are synthesized into a new proposed mechanism, termed the "spring-loaded boomerang" mechanism of membrane fusion, which is presented here as a hypothesis.  相似文献   

12.
Substantial progress has been made in recent years to augment the current understanding of structures and interactions that promote viral membrane fusion. This progress is reviewed with a particular emphasis on recently determined structures of viral fusion domains and their interactions with lipid membranes. The results from the different structural and thermodynamic experimental approaches are synthesized into a new proposed mechanism, termed the “spring-loaded boomerang” mechanism of membrane fusion, which is presented here as a hypothesis.  相似文献   

13.
The structural biology of type I viral membrane fusion   总被引:1,自引:0,他引:1  
The fusion of viral membranes with target-cell membranes is an essential step in the entry of enveloped viruses into cells, and recent X-ray structures of paramyxoviral envelope proteins have provided new insights into protein-mediated plasma-membrane fusion. Here, we review our understanding of the structural transitions that are involved in this fusion pathway, compare it to our understanding of influenza virus membrane fusion, and discuss the implications for retroviral membrane fusion.  相似文献   

14.
Membrane fusion and fission underlie two limiting steps of enveloped virus replication cycle: access to the interior of the host-cell (entry) and dissemination of viral progeny after replication (budding), respectively. These dynamic processes proceed mediated by specialized proteins that disrupt and bend the lipid bilayer organization transiently and locally. We introduced Wimley-White membrane-water partitioning free energies of the amino acids as an algorithm for predicting functional domains that may transmit protein conformational energy into membranes. It was found that many viral products possess unusually extended, aromatic-rich pre-transmembrane stretches predicted to stably reside at the membrane interface. Here, we review structure-function studies, as well as data reported on the interaction of representative peptides with model membranes, all of which sustain a functional role for these domains in viral fusion and fission. Since pre-transmembrane sequences also constitute antigenic determinants in a membrane-bound state, we also describe some recent results on their recognition and blocking at membrane interface by neutralizing antibodies.  相似文献   

15.
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.  相似文献   

16.
Formation of helix bundles has been proposed as a general mechanism for viral and cellular membrane fusion reactions. Class I viral fusion proteins, including HIV Env and influenza hemagglutinin (HA), form six-helix bundles in their fusogenic forms. The HIV Env six-helix bundle extends to the membrane proximal end of the protein, where it is poised to pull the fusing membranes together. In contrast, the HA six-helix bundle is located at the membrane distal end of the protein. It is followed by a C-terminal 'leash' that packs into the grooves and extends to the membrane proximal end of the coiled-coil. Here, we describe the ability of C-terminal leash mutants to change conformation and induce fusion. Our data indicate that packing of the C-terminal leash into the grooves of the coiled-coil is necessary for HA to mediate the lipid mixing stage of fusion, and that hydrophobic membrane proximal leash residues secure this interaction. Therefore, HA employs a 'leash in the groove,' rather than a helix-bundle, mechanism of membrane fusion.  相似文献   

17.
Fluorescent lipid probes in the study of viral membrane fusion   总被引:1,自引:0,他引:1  
Fluorescent lipid probes are widely used in the observation of viral membrane fusion, providing a sensitive method to study fusion mechanism(s). Due to the wealth of data concerning liposome fusion, a variety of fusion assays has been designed including fluorescent probe redistribution, fluorescence dequenching, fluorescence resonance energy transfer and photosensitized labeling. These methods can be tailored for different virus fusion assays. For instance, virions can be loaded with membrane dye which dequenches at the moment of membrane merger. This allows for continuous observation of fusion and therefore kinetic information can be acquired. In the case of cells expressing viral envelope proteins, dye redistribution studies of lipidic and water-soluble fluorophores yield information about fusion intermediates. Lipid probes can be metabolically incorporated into cell membranes, allowing observation of membrane fusion in vitro with minimal chance of flip flop, non-specific transfer and formation of microcrystals. Fluorescent lipid probes have been incorporated into liposomes and/or reconstituted viral envelopes, which provide a well-defined membrane environment for fusion to occur. Interactions of the viral fusion machinery with the membrane can be observed through the photosensitized labeling of the interacting segments of envelope proteins with a hydrophobic probe. Thus, fluorescent lipid probes provide a broad repertoire of fusion assays and powerful tools to produce precise, quantitative data in real time required for the elucidation of the complex process of viral fusion.  相似文献   

18.
Release and subcellular fractionation experiments indicate that fusion of a novel tertiary granule with the plasma membrane is concomitant with human neutrophil activation. Phorbol 12-myristate 13-acetate (PMA) induced a respiratory burst in human neutrophils as well as a high release of gelatinase, a marker of the tertiary granule. Preincubation of neutrophils with cytochalasin E induced a partially activated or 'primed' state, in which cells were unable to generate superoxide anion, but showed a reduced latency period for this activity. Fusion of tertiary granules with the cell surface also occurred during priming, although to a lesser extent than in PMA stimulation. The rapid tertiary granule degranulation, preceding that of specifics and azurophilics, seems to play an important role in the functionality and secretory properties of human neutrophils.  相似文献   

19.
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class II (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.  相似文献   

20.
Nipah virus (NiV) is a deadly emerging paramyxovirus. The NiV attachment (NiV-G) and fusion (NiV-F) envelope glycoproteins mediate both syncytium formation and viral entry. Specific N-glycans on paramyxovirus fusion proteins are generally required for proper conformational integrity and biological function. However, removal of individual N-glycans on NiV-F had little negative effect on processing or fusogenicity and has even resulted in slightly increased fusogenicity. Here, we report that in both syncytium formation and viral entry assays, removal of multiple N-glycans on NiV-F resulted in marked increases in fusogenicity (>5-fold) but also resulted in increased sensitivity to neutralization by NiV-F-specific antisera. The mechanism underlying the hyperfusogenicity of these NiV-F N-glycan mutants is likely due to more-robust six-helix bundle formation, as these mutants showed increased fusion kinetics and were more resistant to neutralization by a fusion-inhibitory reagent based on the C-terminal heptad repeat region of NiV-F. Finally, we demonstrate that the fusogenicities of the NiV-F N-glycan mutants were inversely correlated with the relative avidities of NiV-F's interactions with NiV-G, providing support for the attachment protein "displacement" model of paramyxovirus fusion. Our results indicate that N-glycans on NiV-F protect NiV from antibody neutralization, suggest that this "shielding" role comes together with limiting cell-cell fusion and viral entry efficiencies, and point to the mechanisms underlying the hyperfusogenicity of these N-glycan mutants. These features underscore the varied roles that N-glycans on NiV-F play in the pathobiology of NiV entry but also shed light on the general mechanisms of paramyxovirus fusion with host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号