首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Karolinska Institutet and Washington University polyomaviruses (KIPyV and WUPyV, respectively) are recently discovered human viruses that infect the respiratory tract. Although they have not yet been linked to disease, they are prevalent in populations worldwide, with initial infection occurring in early childhood. Polyomavirus capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which determines antigenicity and receptor specificity. The WUPyV and KIPyV VP1 proteins are distant in evolution from VP1 proteins of known structure such as simian virus 40 or murine polyomavirus. We present here the crystal structures of unassembled recombinant WUPyV and KIPyV VP1 pentamers at resolutions of 2.9 and 2.55 Å, respectively. The WUPyV and KIPyV VP1 core structures fold into the same β-sandwich that is a hallmark of all polyomavirus VP1 proteins crystallized to date. However, differences in sequence translate into profoundly different surface loop structures in KIPyV and WUPyV VP1 proteins. Such loop structures have not been observed for other polyomaviruses, and they provide initial clues about the possible interactions of these viruses with cell surface receptors.  相似文献   

2.
The papillomavirus major late protein, L1, forms the pentameric assembly unit of the viral shell. Recombinant HPV16 L1 pentamers assemble in vitro into capsid-like structures, and truncation of ten N-terminal residues leads to a homogeneous preparation of 12-pentamer, icosahedral particles. X-ray crystallographic analysis of these particles at 3.5 A resolution shows that L1 closely resembles VP1 from polyomaviruses. Surface loops contain the sites of sequence variation among HPV types and the locations of dominant neutralizing epitopes. The ease with which small virus-like particles may be obtained from L1 expressed in E. coli makes them attractive candidate components of a papillomavirus vaccine. Their crystal structure also provides a starting point for future vaccine design.  相似文献   

3.
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.  相似文献   

4.
The SV40 capsid is composed primarily of 72 pentamers of the VP1 major capsid protein. Although the capsid also contains the minor capsid protein VP2 and its amino-terminally truncated form VP3, their roles in capsid assembly remain unknown. An in vitro assembly system was used to investigate the role of VP2 in the assembly of recombinant VP1 pentamers. Under physiological salt and pH conditions, VP1 alone remained dissociated, and at pH 5.0, it assembled into tubular structures. A stoichiometric amount of VP2 allowed the assembly of VP1 pentamers into spherical particles in a pH range of 7.0 to 4.0. Electron microscopy observation, sucrose gradient sedimentation analysis, and antibody accessibility tests showed that VP2 is incorporated into VP1 particles. The functional domains of VP2 important for VP1 binding and for enhancing VP1 assembly were further explored with a series of VP2 deletion mutants. VP3 also enhanced VP1 assembly, and a region common to VP2 and VP3 (amino acids 119-272) was required to promote VP1 pentamer assembly. These results are relevant for controlling recombinant capsid formation in vitro, which is potentially useful for the in vitro development of SV40 virus vectors.  相似文献   

5.
The mouse polyomavirus gene for the major structural protein, VP1, with point mutation in the calcium-binding pocket (VP1(Ala)), was expressed in Saccharomyces cerevisiae and in a baculovirus expression system. Surprisingly, VP1(Ala) forms virus-like particles (VLPs) in nuclei of both yeast and insect cells. VP1(Ala)-VLPs produced in S. cerevisiae are unstable and, unlike wild-type VP1 (VP1(wt))-VLPs, they disassemble during the purification procedure and storage. In contrast to VP1(wt), VP1(Ala) does not interact with the yeast mitotic spindle. Nevertheless, both wild-type and mutated VP1 inhibit yeast cell growth. The inhibition is cAMP-dependent. The production of VP1(Ala) and VP1(wt)-VLPs in insect cells also revealed differences in their interactions with cellular protein(s). Thus, the mutation in the VP1 calcium pocket alters the stability and surface conformation of VLPs rather than the ability of VP1 to self-assemble.  相似文献   

6.
Interactions among the major and minor coat proteins of polyomavirus.   总被引:12,自引:8,他引:4       下载免费PDF全文
Murine polyomavirus contains two related minor coat proteins, VP2 and VP3, in addition to the major coat protein, VP1. The sequence of VP3 is identical to that of the carboxy-terminal two-thirds of VP2. VP2 may serve a role in uncoating of the virus, and both minor coat proteins may be important for viral assembly. In this study, we show that VP3 and a series of deletion mutants of VP3 can be expressed in Escherichia coli as fusion proteins to glutathione S-transferase and partially solubilized with a mild detergent. Using an in vitro binding assay, we demonstrate that a 42-amino-acid fragment near the carboxy terminus of VP3 (residues 140 to 181) is sufficient for binding to purified VP1 pentamers. This binding interaction is rapid, saturable, and specific for the common carboxy terminus of VP2 and VP3. The VP1-VP3 complex can be coimmunoprecipitated with an antibody specific to VP1, and a purified VP3 fragment can selectively extract VP1 from a crude cell lysate. The stoichiometry of the binding reaction suggests that each VP1 pentamer in the virus binds either one VP2 or one VP3, with the VP1-VP2/3 complex stabilized by hydrophobic interactions. These results, taken together with studies from other laboratories on the expression of polyomavirus capsid proteins in mouse and insect cells (S. E. Delos, L. Montross, R. B. Moreland, and R. L. Garcea, Virology, 194:393-398, 1993; J. Forstova, N. Krauzewicz, S. Wallace, A. J. Street, S. M. Dilworth, S. Beard, and B. E. Griffin, J. Virol. 67:1405-1413, 1993), support the idea that a VP1-VP2/3 complex forms in the cytoplasm and, after translocation into the nucleus, acts as the unit for viral assembly.  相似文献   

7.
The simian virus 40 capsid is composed of 72 pentamers of VP1 protein. Although the capsid is known to dissociate to pentamers in vitro following simultaneous treatment with reducing and chelating agents, the functional roles of disulfide linkage and calcium ion-mediated interactions are not clear. To elucidate the roles of these interactions, we introduced amino acid substitutions in VP1 at cysteine residues and at residues involved in calcium binding. We expressed the mutant proteins in a baculovirus system and analyzed both their assembly into virus-like particles (VLPs) in insect cells and the disassembly of those VLPs in vitro. We found that disulfide linkages at both Cys-9 and Cys-104 conferred resistance to proteinase K digestion on VLPs, although neither linkage was essential for the formation of VLPs in insect cells. In particular, reduction of the disulfide linkage at Cys-9 was found to be critical for VLP dissociation to VP1 pentamers in the absence of calcium ions, indicating that disulfide linkage at Cys-9 prevents VLP dissociation, probably by increasing the stability of calcium ion binding. We found that amino acid substitutions at carboxy-terminal calcium ion binding sites (Glu-329, Glu-330, and Asp-345) resulted in the frequent formation of unusual tubular particles as well as VLPs in insect cells, indicating that these residues affect the accuracy of capsid assembly. In addition, unexpectedly, amino acid substitutions at any of the calcium ion binding sites tested, especially at Glu-157, resulted in increased stability of VLPs in the absence of calcium ions in vitro. These results suggest that appropriate affinities of calcium ion binding are responsible for both assembly and disassembly of the capsid.  相似文献   

8.
Using the p2Bac dual multiple cloning site transfer vector, the polyomavirus major capsid protein gene VP1 was cloned for expression in the baculovirus-insect cell expression system. The 5-day-infected cellular lysate from this recombinant preparation was purified by cesium chloride density gradient centrifugation. Capsid-like particles were observed in the resulting preparation. The purified particle preparation was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was shown to have accurately expressed the polyomavirus VP1 protein as cloned. It was found that the preparation revealed the presence of host histones in the stained gels, which is indicative of DNA packaging. To determine if cellular DNA was being packaged in the particles, Sf9 insect cells were prelabeled with [3H] thymidine. The label was removed, and the cells were subsequently infected with a recombinant Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) carrying the polyomavirus VP1 gene. Upon purification through three cesium chloride gradients and DNase I treatment, capsid-like particles, containing [3H]thymidine-labeled DNA, were isolated which were found to coincide with hemagglutination activity. Studies have indicated that the AcMNPV appears to have the ability to fragment Sf9 cellular DNA. When infected with the recombinant AcMNPV carrying the VP1 gene of polyomavirus, these host DNA fragments are being packaged by the VPI major capsid protein; further, these DNA fragments have been shown to be approximately 5 kb in size, which corresponds to the size of the native polyomavirus genome. These studies demonstrate that the recombinant polyomavirus VP1 protein has the ability to package DNA in the absence of the minor structural proteins VP2 and VP3 and independently of the polyomavirus T antigens.  相似文献   

9.
To determine the mechanism for the delayed and inefficient replication of the picornavirus hepatitis A virus in cell culture, we studied the kinetics of synthesis and assembly of virus-specific proteins by metabolic labeling of infected BS-C-1 cells with L-[35S]methionine and L-[35S]cysteine. Sedimentation, electrophoresis, and autoradiography revealed the presence of virions, provirions, procapsids, and 14S (pentameric) subunits. Virions and provirions contained VP1, VP0, VP2, and VP3; procapsids contained VP1, VP0, and VP3; and pentamers contained PX, VP0, and VP3, as previously shown by immunoblotting (D.A. Anderson and B.C. Ross, J. Virol. 64:5284-5289, 1990). Under single-cycle growth conditions label was found in 14S subunits immediately after labeling from 15 to 18 h postinfection (p.i.); however, a proportion of labeled polyprotein was not cleaved and assembled into pentamers for a further 18 h. When analyzed at 72 h p.i., incorporation of label which flowed into virions was detected from 3 h p.i., with maximal uptake levels being observed from 12 to 15 h p.i. Viral antigen, infectious virus, and viral RNA were determined in parallel, with coincident peaks in these variables being observed 12 h after the period of maximum label uptake. It was also found that the lag between the synthesis of the viral polyprotein and assembly of viral particles was the same after labeling from either 12 to 15 or 27 to 30 h p.i. despite increased levels of viral RNA during this period, suggesting that factors additional to the level of RNA are involved in the restriction of viral replication. Sedimentation and immunoblot analysis revealed an additional protein of approximately 100 kDa containing both VP1- and VP2-reactive sequences and sedimenting slightly more slowly than 14S pentamers, which may represent intact P12A assembled into pentamers as has been reported for the P1 of some other picornaviruses (S. McGregor and R. R. Rueckert, J. Virol. 21:548-553, 1977). The results of this study suggest that cleavage of the hepatitis A virus polyprotein to produce pentamers is protracted (though not rate limiting) early in infection, while the assembly of pentamers into higher structures is a rapid process once sufficient viral RNA is produced for encapsidation.  相似文献   

10.
Virus-like particles (VLPs), a promising next-generation drug delivery vehicle, can be formed in vitro using a recombinant viral capsid protein VP1 from SV40. Seventy-two VP1 pentamers interconnect to form the T = 7d lattice of SV40 capsids, through three types of C-terminal interactions, alpha-alpha'-alpha', beta-beta' and gamma-gamma. These appear to require VP1 conformational switch, which involve in particular the region from amino acids 301-312 (herein Region I). Here we show that progressive deletions from the C-terminus of VP1, up to 34 amino acids, cause size and shape variations in the resulting VLPs, including tubular formation, whereas deletions beyond 34 amino acids simply blocked VP1 self-assembly. Mutants carrying in Region I point mutations predicted to disrupt alpha-alpha'-alpha'-type and/or beta-beta'-type interactions formed small VLPs resembling T = 1 symmetry. Chimeric VP1, in which Region I of SV40 VP1 was substituted with the homologous region from VP1 of other polyomaviruses, assembled only into small VLPs. Together, our results show the importance of the integrity of VP1 C-terminal region and the specific amino acid sequences within Region I in the assembly of normal VLPs. By understanding how to alter VLP sizes and shapes contributes to the development of drug delivery systems using VLPs.  相似文献   

11.
Polymorphism in the assembly of polyomavirus capsid protein VP1.   总被引:16,自引:2,他引:14       下载免费PDF全文
Polyomavirus major capsid protein VP1, purified after expression of the recombinant gene in Escherichia coli, forms stable pentamers in low-ionic strength, neutral, or alkaline solutions. Electron microscopy showed that the pentamers, which correspond to viral capsomeres, can be self-assembled into a variety of polymorphic aggregates by lowering the pH, adding calcium, or raising the ionic strength. Some of the aggregates resembled the 500-A-diameter virus capsid, whereas other considerably larger or smaller capsids were also produced. The particular structures formed on transition to an environment favoring assembly depended on the pathway of the solvent changes as well as on the final conditions. Mass measurements from cryoelectron micrographs and image analysis of negatively stained specimens established that a distinctive 320-A-diameter particle consists of 24 close-packed pentamers arranged with octahedral symmetry. Comparison of this unexpected octahedral assembly with a 12-capsomere icosahedral aggregate and the 72-capsomere icosahedral virus capsid by computer graphics methods indicates that similar connections are made among trimers of pentamers in these shells of different size. The polymorphism in the assembly of VP1 pentamers can be related to the switching in bonding specificity required to build the virus capsid.  相似文献   

12.
The polyomavirus VP2 and VP3 capsid proteins were expressed in Escherichia coli. The majority of the expressed proteins were in an insoluble fraction, and they were extracted and initially purified in 8 M urea before renaturation. Soluble VP2 and VP3 were mixed with purified recombinant VP1 capsomeres, and their interactions were assayed by immunoprecipitation and ion-exchange chromatography. Coimmunoprecipitation could be demonstrated with antibodies to either VP1 or VP2/VP3. Mixing recombinant VP1 with VP2 and VP3 modified the recognition of VP1 by domain-specific antipeptide antibodies and altered the chromatographic behavior of the individual proteins. Similar results were observed when a truncated VP1 protein, delta NCOVP1, with 62 amino acids deleted from the carboxy terminus was mixed with VP2/VP3. After the mixing, equilibrium dissociation constants for their binding to either VP1 or delta NCOVP1 were determined to be 0.37 +/- 0.23 microM for VP2 and 0.18 +/- 0.21 microM for VP3. These studies demonstrate that the recombinant VP2 and VP3 proteins interact with VP1 to affect the biochemical properties of VP1 capsomeres and to change the epitope accessibility of VP1 pentamers. These changes may reflect conformational alterations in VP1 capsomeres which are necessary for viral genome encapsidation.  相似文献   

13.
Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution.  相似文献   

14.
Myristylated polyomavirus VP2: role in the life cycle of the virus.   总被引:10,自引:9,他引:1       下载免费PDF全文
The double-stranded genome of the small DNA tumor virus, polyomavirus, is enclosed in a capsid composed of a major protein, VP1, which associates as pentameric capsomeres into an icosahedral structure, and two minor proteins, VP2 and VP3, whose functions and positions within the structure are unknown. The N-terminal glycine of the VP2 coat protein has been shown to be cotranslationally acylated with myristic acid. To study the function of this modification and the role of VP2 in the life cycle of polyomavirus, the N-terminal glycine, critical to the myristylation consensus sequence, has been altered to a glutamic acid or a valine residue by site-directed oligonucleotide mutagenesis. The glycine----glutamic acid mutant DNA has been further studied. When transfected into cells permissive for the polyomavirus full lytic life cycle, this mutant DNA replicated at levels comparable to those of wild-type viral DNA, and small amounts of nonrevertant (mutant) virus could be harvested from the cultures. The virus particles viewed by electron microscopy appeared slightly distorted, but the ratio of full to empty particles was similar to that produced in a wild-type viral infection. Mutant virus was capable of reinfecting permissive cells but with a considerably reduced efficiency.  相似文献   

15.
The polyomavirus minor late capsid antigen, VP2, is myristylated on its N-terminal glycine, this modification being required for efficient infection of mouse cells. To study further the functions of this antigen, as well as those of the other minor late antigen, VP3, recombinant baculoviruses carrying genes for VP1, VP2, and VP3 have been constructed and the corresponding proteins have been synthesized in insect cells. A monoclonal antibody recognizing VP1, alpha-PyVP1-A, and two monoclonal antibodies against the common region of VP2 and VP3, alpha-PyVP2/3-A and alpha-PyVP2/3-B, have been generated. Reactions of antibodies with antigens were characterized by indirect immunofluorescence, immunoprecipitation, and immunoblot analysis. Immunofluorescent staining of mouse cells infected with polyomavirus showed all antigens to be localized in nuclei. When the late polyomavirus proteins were expressed separately in insect cells, however, only VP1 was efficiently transported into the nucleus; VP2 was localized discretely around the outside of the nucleus, and VP3 exhibited a diffused staining pattern in the cytoplasm. Coexpression of VP2, or VP3, with VP1 restored nuclear localization. Immunoprecipitation of infected mouse cells with either anti-VP1 or anti-VP2/3 antibodies precipitated complexes containing all three species, consistent with the notion that VP1 is necessary for efficient transport of VP2 and VP3 into the nucleus. Purified empty capsid-like particles, formed in nuclei of insect cells coinfected with all three baculoviruses, contained VP2 and VP3 proteins in amounts comparable to those found in empty capsids purified from mouse cells infected with wild-type polyomavirus. Two-dimensional gel analysis of VP1 species revealed that coexpression with VP2 affects posttranslational modification of VP1.  相似文献   

16.
Unlike the capsids of icosahedral viruses, retroviral capsids are pleomorphic, with variably curved, closed fullerene shells composed of ∼ 250 hexamers and exactly 12 pentamers of the viral CA protein. Structures of CA oligomers have been difficult to obtain because the subunit-subunit interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Guided by a cryoEM-based model of the hexagonal lattice of HIV-1 CA, we used a two-step biochemical strategy to obtain soluble CA hexamers and pentamers for crystallization. First, each oligomer was stabilized by engineering disulfide cross-links between the N-terminal domains of adjacent subunits. Second, the cross-linked oligomers were prevented from polymerizing into hyperstable, capsid-like structures by mutations that weakened the dimeric association between the C-terminal domains that link adjacent oligomers. The X-ray structures revealed that the oligomers are comprised of a fairly rigid, central symmetric ring of N-terminal domains encircled by mobile C-terminal domains. Assembly of the quasi-equivalent oligomers requires remarkably subtle rearrangements in inter-subunit quaternary bonding interactions, and appears to be controlled by an electrostatic switch that favors hexamers over pentamers. An atomic model of the complete HIV-1 capsid was then built using the fullerene cone as a template. Rigid-body rotations around two assembly interfaces are sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone. The steps in determining this HIV-1 capsid atomic model exemplify the synergy of hybrid methods in structural biology, a powerful approach for exploring the structure of pleomorphic macromolecular complexes.  相似文献   

17.
18.
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and causes progressive multifocal leukoencephalopathy in humans. JCV encodes early proteins (large T antigen, small T antigen, and T' antigen) and four late proteins (agnoprotein, and three viral capsid proteins, VP1, VP2, and VP3). In the current study, a novel function for JCV agnoprotein in the morphogenesis of JC virion particles was identified. It was found that mature virions of agnoprotein-negative JCV are irregularly shaped. Sucrose gradient sedimentation and cesium chloride gradient ultracentrifugation analyses revealed that the particles of virus lacking agnoprotein assemble into irregularly sized virions, and that agnoprotein alters the efficiency of formation of VP1 virus-like particles. An in vitro binding assay and immunocytochemistry revealed that agnoprotein binds to glutathione S-transferase fusion proteins of VP1 and that some fractions of agnoprotein colocalize with VP1 in the nucleus. In addition, gel filtration analysis of formation of VP1-pentamers revealed that agnoprotein enhances formation of these pentamers by interacting with VP1. The present findings suggest that JCV agnoprotein plays a role, similar to that of SV40 agnoprotein, in facilitating virion assembly.  相似文献   

19.
Tyrosine phosphorylation has been shown to play a role in the replication of several herpesviruses. In this report, we demonstrate that bovine herpesvirus 1 infection triggered tyrosine phosphorylation of proteins with molecular masses similar to those of phosphorylated viral structural proteins. One of the tyrosine-phosphorylated viral structural proteins was the tegument protein VP22. A tyrosine 38-to-phenylalanine mutation totally abolished the phosphorylation of VP22 in transfected cells. However, construction of a VP22 tyrosine 38-to-phenylalanine mutant virus demonstrated that VP22 was still phosphorylated but that the phosphorylation site may change to the C terminus rather than be in the N terminus as in wild-type VP22. In addition, the loss of VP22 tyrosine phosphorylation correlated with reduced incorporation of VP22 compared to that of envelope glycoprotein D in the mutant viruses but not with the amount of VP22 produced during virus infection. Our data suggest that tyrosine phosphorylation of VP22 plays a role in virion assembly.  相似文献   

20.
The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor encapsidated the defective genome RNA. However, the cleavage of VP0 to VP4 and VP2 was delayed, resulting in the accumulation of provirions. The maturation cleavage of the VP0 protein containing the VP4-TS mutation was accelerated by incubation of the provirions at 37 degrees C. The results of these studies demonstrate that mutations in the maturation cleavage site have profound effects on the subsequent capability of the capsid proteins to assemble and provide evidence for the existence of the provirion as an assembly intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号