首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on alpha-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus beta-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of alpha-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of beta-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying beta-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

2.
The gene mel1, encoding alpha-galactosidase in Schizosaccharomyces pombe, and the gene bgl2, encoding and beta-glucosidase in Trichoderma reesei, were isolated and co-expressed in the industrial ethanol-producing strain of Saccharomyces cerevisiae. The resulting strains were able to grow on cellobiose and melibiose through simultaneous production of sufficient extracellular alpha-galactosidase and beta-glucosidase activity. Under aerobic conditions, the growth rate of the recombinant strain GC 1 co-expressing 2 genes could achieve 0.29 OD600 h(-1) and a biomass yield up to 7.8 g l(-1) dry cell weight on medium containing 10.0 g l(-1) cellobiose and 10.0 g l(-1) melibiose as sole carbohydrate source. Meanwhile, the new strain of S. cerevisiae CG 1 demonstrated the ability to directly produce ethanol from microcrystalline cellulose during simultaneous saccharification and fermentation process. Approximately 36.5 g l(-1) ethanol was produced from 100 g of cellulose supplied with 5 g l(-1) melibose within 60 h. The yield (g of ethanol produced/g of carbohydrate consumed) was 0.44 g/g, which corresponds to 88.0% of the theoretical yield.  相似文献   

3.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

4.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

5.
It was confirmed that simultaneous saccharification and fermentation are effective for accelerating enzymatic saccharification of cellulose. In this work, the effects of ethanol on the saccharification of tissue paper by Trichoderma cellulase (Meicelase CEPB) have been investigated. The following results were obtained. (1) Saccharification was inhibited by at least 0.2M ethanol. (2) Less than 4M ethanol did not affect the enzymatic activities of beta-glucosidase and endoglucanase (C(x)) at all. The thermal stability of endoglucanase was not also varied by ethanol. (3) It is suggested that ethanol depresses the adsorption of exoglucanase on cellulose. (4) The rate expression of saccharification of cellulose in the presense of ethanol is proposed. (5) The inhibititory effect of ethanol was found to become more significant in the later stages of the reaction than just the initial stage.  相似文献   

6.
Considering importance of a microbial strain capable of increased cellulases production and insensitive to catabolite repression for industrial use, we have developed a mutant strain of Trichoderma citrinoviride by multiple exposures to EMS and ethidium bromide. The mutant produced 0.63, 3.12, 8.22 and 1.94 IU ml(-1) FPase, endoglucanase, beta-glucosidase and cellobiase, respectively. These levels were, respectively, 2.14, 2.10, 4.09 and 1.73 fold higher than those in parent strain. Glucose (upto 20 mM) did not repress enzyme production by the mutant under submerged fermentation conditions. In vitro activity assay with partially purified cellulase showed lack of inhibition by glucose. Interestingly, the partially purified endoglucanase and beta-glucosidase were activated by 2.0 fold and 2.6 fold, respectively, by 20 mM and 30 mM ethanol in the assay mixture. Genetic distinction of the mutant was revealed by the presence of two unique amplicans in comparative DNA fingerprinting performed using 20 random primers.  相似文献   

7.
For direct and efficient ethanol production from cellulosic materials, we constructed a novel cellulose-degrading yeast strain by genetically codisplaying two cellulolytic enzymes on the cell surface of Saccharomyces cerevisiae. By using a cell surface engineering system based on alpha-agglutinin, endoglucanase II (EGII) from the filamentous fungus Trichoderma reesei QM9414 was displayed on the cell surface as a fusion protein containing an RGSHis6 (Arg-Gly-Ser-His(6)) peptide tag in the N-terminal region. EGII activity was detected in the cell pellet fraction but not in the culture supernatant. Localization of the RGSHis6-EGII-alpha-agglutinin fusion protein on the cell surface was confirmed by immunofluorescence microscopy. The yeast strain displaying EGII showed significantly elevated hydrolytic activity toward barley beta-glucan, a linear polysaccharide composed of an average of 1,200 glucose residues. In a further step, EGII and beta-glucosidase 1 from Aspergillus aculeatus No. F-50 were codisplayed on the cell surface. The resulting yeast cells could grow in synthetic medium containing beta-glucan as the sole carbon source and could directly ferment 45 g of beta-glucan per liter to produce 16.5 g of ethanol per liter within about 50 h. The yield in terms of grams of ethanol produced per gram of carbohydrate utilized was 0.48 g/g, which corresponds to 93.3% of the theoretical yield. This result indicates that efficient simultaneous saccharification and fermentation of cellulose to ethanol are carried out by a recombinant yeast cells displaying cellulolytic enzymes.  相似文献   

8.
In order to reduce the cost of bioethanol production from lignocellulosic biomass, we conferred the ability to ferment cellulosic materials directly on Zymobacter palmae by co-expressing foreign endoglucanase and β-glucosidase genes. Z. palmae is a novel ethanol-fermenting bacterium capable of utilizing a broad range of sugar substrates, but not cellulose. Therefore, the six genes encoding the cellulolytic enzymes (CenA, CenB, CenD, CbhA, CbhB, and Cex) from Cellulomonas fimi were introduced and expressed in Z. palmae. Of these cellulolytic enzyme genes cloned, CenA degraded carboxymethylcellulose and phosphoric acid-swollen cellulose (PASC) efficiently. The extracellular CenA catalyzed the hydrolysis of barley β-glucan and PASC to liberate soluble cello-oligosaccharides, indicating that CenA is the most suitable enzyme for cellulose degradation among those cellulolytic enzymes expressed in Z. palmae. Furthermore, the cenA gene and β-glucosidase gene (bgl) from Ruminococcus albus were co-expressed in Z. palmae. Of the total endoglucanase and β-glucosidase activities, 57.1 and 18.1 % were localized in the culture medium of the strain. The genetically engineered strain completely saccharified and fermented 20 g/l barley β-glucan to ethanol within 84 h, producing 79.5 % of the theoretical yield. Thus, the production and secretion of CenA and BGL enabled Z. palmae to efficiently ferment a water-soluble cellulosic polysaccharide to ethanol.  相似文献   

9.
In this study, Saccharomyces cerevisiae was engineered for simultaneous saccharification and fermentation of cellulose by the overexpression of the endoglucanase D (EngD) from Clostridium cellulovorans and the β-glucosidase (Bgl1) from Saccharomycopsis fibuligera . To promote secretion of the two enzymes, the genes were fused to the secretion signal of the S. cerevisiae α mating factor gene. The recombinant developed yeast could produce ethanol through simultaneous production of sufficient extracellular endoglucanase and β-glucosidase. When direct ethanol fermentation from 20 g L−1β-glucan as a substrate was performed with our recombinant strains, the ethanol concentration reached 9.15 g L−1 after 50 h of fermentation. The conversion ratio of ethanol from β-glucan was 80.3% of the theoretical ethanol concentration produced from 20 g L−1β-glucan. In conclusion, we have demonstrated the construction of a yeast strain capable of conversion of a cellulosic substrate to ethanol, representing significant progress towards the realization of processing of cellulosic biomass in a consolidated bioprocessing configuration.  相似文献   

10.
木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2和egl2,Aspergillus aculeatus cbh1、egl1和bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。  相似文献   

11.
Heterologous secretory expression of endoglucanase E (Clostridium thermocellum) and β-glucosidase 1 (Saccharomycopsis fibuligera) was achieved in Saccharomyces cerevisiae fermentation cultures as an α-mating factor signal peptide fusion, based on the native enzyme coding sequence. Ethanol production depends on simultaneous saccharification of cellulose to glucose and fermentation of glucose to ethanol by a recombinant yeast strain as a microbial biocatalyst. Recombinant yeast strain expressing endoglucanase and β-glucosidase was able to produce ethanol from β-glucan, CMC and acid swollen cellulose. This indicates that the resultant yeast strain of this study acts efficiently as a whole cell biocatalyst.  相似文献   

12.
Shen Y  Zhang Y  Ma T  Bao X  Du F  Zhuang G  Qu Y 《Bioresource technology》2008,99(11):5099-5103
To reduce the cellobiose inhibition of exoglucanase and endogulcanase and enhance cellulose hydrolysis during simultaneous saccharification and fermentation (SSF), a beta-glucosidase encoding gene named BGL1 was cloned from Saccharomycopsis fibuligera and integrated into the chromosomal rDNA region of the Saccharomyces cerevisiae industrial strain NAN-27 producing NAN-227. Compared with the parental strain, which had no detectable activity, the beta-glucosidase specific activity in NAN-227 was 1.02 IU/mg of protein. When cellobiose was used as the sole carbon source in a shake-flask, NAN-227 consumed 6.2g/L of cellobiose and produced 3.3g/L of ethanol in 48 h. The yield was 0.532 g/g. The parent strain only consumed 1.92 g/L of cellobiose and no ethanol was detected. During the SSF of acid-pretreated corncobs NAN-227 produced 20 g/L of ethanol at 72 h, which was similar to the parent strain when 20IU of beta-glucosidase/g of substrate was added.  相似文献   

13.
4-hydroxybenzoic acid (4-HBA) is an industrially important aromatic compound, and there is an urgent need to establish a bioprocess to produce this compound in a sustainable and environmentally friendly manner from renewable feedstocks such as cellulosic biomass. Here, we developed a bioprocess to directly produce 4-HBA from cellulose using a recombinant Pichia pastoris strain that displays heterologous cellulolytic enzymes on its cell surface via the glycosylphosphatidylinositol (GPI)-anchoring system. β-glucosidase (BGL) from Aspergillus aculeatus, endoglucanase (EG) from Trichoderma reesei, and cellobiohydrolase (CBH) from Talaromyces emersonii were co-displayed on the cell surface of P. pastoris using an appropriate GPI-anchoring domain for each enzyme. The cell-surface cellulase activity was further enhanced using P. pastoris SPI1 promoter- and secretion signal sequences. The resulting strains efficiently hydrolyzed phosphoric acid swollen cellulose (PASC) to glucose. Then, we expressed a highly 4-HBA-resistant chorismate pyruvate-lyase (UbiC) from Providencia rustigianii in the cellulase-displaying strain. This strain produced 975 mg/L of 4-HBA from PASC, which corresponding to 36.8% of the theoretical maximum yield, after 96 h of batch fermentation without the addition of commercial cellulase. This 4-HBA yield was over two times higher than that obtained from glucose (12.3% of the theoretical maximum yield). To our knowledge, this is the first report on the direct production of an aromatic compound from cellulose using cellulase-displaying yeast.  相似文献   

14.
15.
A whole-cell biocatalyst with the ability to induce synergistic and sequential cellulose-degradation reaction was constructed through codisplay of three types of cellulolytic enzyme on the cell surface of the yeast Saccharomyces cerevisiae. When a cell surface display system based on α-agglutinin was used, Trichoderma reesei endoglucanase II and cellobiohydrolase II and Aspergillus aculeatus β-glucosidase 1 were simultaneously codisplayed as individual fusion proteins with the C-terminal-half region of α-agglutinin. Codisplay of the three enzymes on the cell surface was confirmed by observation of immunofluorescence-labeled cells with a fluorescence microscope. A yeast strain codisplaying endoglucanase II and cellobiohydrolase II showed significantly higher hydrolytic activity with amorphous cellulose (phosphoric acid-swollen cellulose) than one displaying only endoglucanase II, and its main product was cellobiose; codisplay of β-glucosidase 1, endoglucanase II, and cellobiohydrolase II enabled the yeast strain to directly produce ethanol from the amorphous cellulose (which a yeast strain codisplaying β-glucosidase 1 and endoglucanase II could not), with a yield of approximately 3 g per liter from 10 g per liter within 40 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.45 g/g, which corresponds to 88.5% of the theoretical yield. This indicates that simultaneous and synergistic saccharification and fermentation of amorphous cellulose to ethanol can be efficiently accomplished using a yeast strain codisplaying the three cellulolytic enzymes.  相似文献   

16.
Gao J  Weng H  Zhu D  Yuan M  Guan F  Xi Y 《Bioresource technology》2008,99(16):7623-7629
The production of extracellular cellulases by a newly isolated thermoacidophilic fungus, Aspergillus terreus M11, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The results showed that the high-level cellulase activity was produced at 45 degrees C pH 3 and moisture 80% with corn stover and 0.8% yeast extract as carbon and nitrogen sources. 581 U endoglucanase activity, 243 U filter paper activity and 128 U beta-glucosidase activity per gram of carbon source were obtained in the optimal condition. Endoglucanase and beta-glucosidase exhibited their maximum activity at pH 2 and pH 3, respectively, and both of them showed remarkable stability in the range of pH 2-5. The activities of endoglucanase and beta-glucosidase were up to the maximum at 70 degrees C and maintained about 65% and 53% of their original activities after incubation at 70 degrees C for 6h. The enzyme preparations from this strain were used to hydrolyze Avicel. Higher hydrolysis yields of Avicel were up to 63% on 5% Avicel (w/v) for 72 h with 20 U FPase/g substrate.  相似文献   

17.
Candida stellata is frequently found in wine fermentations and may be used as a yeast starter in beverage production. In order to acquire additional knowledge on the physiology of C. stellata, a study on sugar metabolism in aerobic and anaerobic conditions was carried out. We found that under anaerobic conditions the low growth rate and biomass yield of C. stellata were due to the diversion of carbon flux from ethanol to glycerol. C. stellata had lower ADHI (alcohol dehydrogenase) activity (3-4 fold) and higher GPDH (glycerol-3-phosphate dehydrogenase) activity (40 and 15 times higher in anaerobiosis and aerobiosis respectively) than that of a Saccharomyces cerevisiae control strain. In aerobic sugar-limited chemostat culture C. stellata exhibited lower maximum biomass concentration [5.23 gl(-1) (dry weight)] than other respirofermentative yeasts at very low dilution rates (up to D = 0.042 h(-1)). While glycerol was constantly produced, ethanol and sugar residue appeared at D = 0.042 h(-1) and D = 0.065 h(-1) respectively. The tendency of C. stellata to form glycerol is probably the main cause of its very low growth and fermentation rates.  相似文献   

18.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

19.
The Aspergillus aculeatus beta-glucosidase 1 (bgl1) gene was expressed in a lactic-acid-producing Saccharomyces cerevisiae strain to enable lactic fermentation with cellobiose. The recombinant beta-glucosidase enzyme was expressed on the yeast cell surface by fusing the mature protein to the C-terminal half region of the alpha-agglutinin. The beta-glucosidase expression plasmids were integrated into the genome. Three strong promoters of S. cerevisiae, the TDH3, PGK1, and PDC1 promoters, were used for beta-glucosidase expression. The specific beta-glucosidase activity varied with the promoter used and the copy number of the bgl1 gene. The highest activity was obtained with strain PB2 that possessed two copies of the bgl1 gene driven by the PDC1 promoter. PB2 could grow on cellobiose and glucose minimal medium at the same rate. Fermentation experiments were conducted in non-selective-rich media containing 95 g l(-1) cellobiose or 100 g l(-1) glucose as a carbon source under microaerobic conditions. The maximum rate of L-lactate production by PB2 on cellobiose (2.8 g l(-1) h(-1)) was similar to that on glucose (3.0 g l(-1) h(-1)). This indicates that efficient fermentation of cellobiose to L-lactate can be accomplished using a yeast strain expressing beta-glucosidase from a mitotically stable genomic integration plasmid.  相似文献   

20.
The development of methods to reduce costs associated with the solubilization of cellulose is essential for the utilization of lignocellulose as a renewable feedstock for fuels and chemicals. One promising approach is the genetic engineering of ethanol-producing microorganisms that also produce cellulase enzymes during fermentation. By starting with an ethanologenic derivative (strain P2) of Klebsiella oxytoca M5A1 with the native ability to metabolize cellobiose, the need for supplemental beta-glucosidase was previously eliminated. In the current study, this approach has been extended by adding genes encoding endoglucanase activities. Genes celY and celZ from Erwinia chrysanthemi have been functionally integrated into the chromosome of P2 using surrogate promoters from Zymomonas mobilis for expression. Both were secreted into the extracellular milieu, producing more than 20,000 endoglucanase units (carboxymethyl cellulase activity) per liter of fermentation broth. During the fermentation of crystalline cellulose with low levels of commercial cellulases of fungal origin, these new strains produced up to 22% more ethanol than unmodified P2. Most of the beneficial contribution was attributed to CelY rather than to CelZ. These results suggest that fungal enzymes with substrate profiles resembling CelY (preference for long-chain polymers and lack of activity on soluble cello-oligosaccharides of two to five glucosyl residues) may be limiting in commercial cellulase preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号