首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many bacteria are characterized by nanoscale ultrastructures, for example S-layers, flagella, fimbriae, or pili. The last two are especially important for attachment to different abiotic and biotic surfaces and for host-pathogen interactions. In this study, we investigated the geometric and elastic properties of pili of different Corynebacterium diphtheriae strains by atomic force microscopy (AFM). We performed quantitative contour-length analysis of bacterial pili and found that the visible contour length of the pili can be described by a log-normal distribution. Our data revealed significant strain-specific variations in the mean visible contour length of the pili, ranging from 260 to 1,590 nm. To estimate their full contour length, which is not directly accessible from the AFM images, we developed a simple correction model. Using this model, we determined the mean full contour length as 510-2,060 nm. To obtain the persistence length we used two different methods of analysis, one based on the end-to-end distance of the pili and one based on the bending angles of short segments. In comparison, the bending angle analysis proved to be more precise and resulted in persistence lengths in the narrow range of 220-280 nm, with no significant strain-specific variations. This is small compared with some other bacterial polymers, for example type IV pili, F-pili, or flagella.  相似文献   

2.
Xylella fastidiosa, a bacterium responsible for Pierce's disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 +/- 11 pN. Mutant cells possessing only type I pili required a force of 204 +/- 22 pN for removal, whereas cells possessing only type IV pili required 119 +/- 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.  相似文献   

3.
Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram‐positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram‐negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram‐positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram‐positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus‐like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus‐related opening in the cell wall, may mediate DNA uptake in S. pneumoniae.  相似文献   

4.
As mediators of adhesion, autoaggregation and bacteria‐induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili‐dependent functions require different ranges of pili numbers.  相似文献   

5.
Xylella fastidiosa, a bacterium responsible for Pierce's disease in grapevines, possesses both type I and type IV pili at the same cell pole. Type IV pili facilitate twitching motility, and type I pili are involved in biofilm development. The adhesiveness of the bacteria and the roles of the two pili types in attachment to a glass substratum were evaluated using a microfluidic flow chamber in conjunction with pilus-defective mutants. The average adhesion force necessary to detach wild-type X. fastidiosa cells was 147 ± 11 pN. Mutant cells possessing only type I pili required a force of 204 ± 22 pN for removal, whereas cells possessing only type IV pili required 119 ± 8 pN to dislodge these cells. The experimental results demonstrate that microfluidic flow chambers are useful and convenient tools for assessing the drag forces necessary for detaching bacterial cells and that with specific pilus mutants, the role of the pilus type can be further assessed.  相似文献   

6.
Dynamic properties of type IV pili are essential for their function in bacterial infection, twitching motility and gene transfer. Laser tweezers are versatile tools to study the molecular mechanism underlying pilus dynamics at the single molecule level. Recently, these optical tweezers have been used to monitor pilus elongation and retraction in vivo at a resolution of several nanometers. The force generated by type IV pili exceeds 100 pN making pili the strongest linear motors characterized to date. The study of pilus dynamics at the single molecule level sheds light on kinetics, force generation, switching and mechanics of the Neisseria gonorrhoeae pilus motor.  相似文献   

7.
Type IV pili are major bacterial virulence factors supporting adhesion, surface motility, and gene transfer. The polymeric pilus fiber is a highly dynamic molecular machine that switches between elongation and retraction. We used laser tweezers to investigate the dynamics of individual pili of Neisseria gonorrheae at clamped forces between 8 pN and 100 pN and at varying concentration of the retraction ATPase PilT. The elongation probability of individual pili increased with increasing mechanical force. Directional switching occurred on two distinct timescales, and regular stepping was absent on a scale > 3 nm. We found that the retraction velocity is bimodal and that the bimodality depends on force and on the concentration of PilT proteins. We conclude that the pilus motor is a multistate system with at least one polymerization mode and two depolymerization modes with the dynamics fine-tuned by force and PilT concentration.  相似文献   

8.
Type IV pili: paradoxes in form and function   总被引:3,自引:0,他引:3  
Type IV pili are filaments on the surfaces of many Gram-negative bacteria that mediate an extraordinary array of functions, including adhesion, motility, microcolony formation and secretion of proteases and colonization factors. Their prominent display on the surfaces of many bacterial pathogens, their vital role in virulence, and their ability to elicit an immune response make Type IV pilus structures particularly relevant for study as targets for component vaccines and therapies. Structural studies of the pili and components of the pilus assembly apparatus have proven extremely challenging, but new approaches and methods have produced important breakthroughs that are advancing our understanding of pilus functions and their complex assembly mechanism. These structures provide insights into the biology of Type IV pili as well as that of the related bacterial secretion and archaeal flagellar systems. This review will summarize the most recent structural advances on Type IV pili and their assembly components and highlight their significance.  相似文献   

9.
Opitz D  Maier B 《PloS one》2011,6(2):e17088
Many bacterial pathogens interfere with cellular functions including phagocytosis and barrier integrity. The human pathogen Neissieria gonorrhoeae generates grappling hooks for adhesion, spreading, and induction of signal cascades that lead to formation cortical plaques containing f-actin and ezrin. It is unclear whether high mechanical forces generated by type IV pili (T4P) are a direct signal that leads to cytoskeletal rearrangements and at which time scale the cytoskeletal response occurs. Here we used laser tweezers to mimic type IV pilus mediated force generation by T4P-coated beads on the order of 100 pN. We found that actin-EGFP and ezrin-EGFP accumulated below pilus-coated beads when force was applied. Within 2 min, accumulation significantly exceeded controls without force or without pili, demonstrating that T4P-generated force rapidly induces accumulation of plaque proteins. This finding adds mechanical force to the many strategies by which bacteria modulate the host cell cytoskeleton.  相似文献   

10.
Microbes have evolved sophisticated mechanisms of motility allowing them to respond to changing environmental conditions. While this cellular process is well characterized in bacteria, the mode and mechanisms of motility are poorly understood in archaea. This study examines the motility of individual cells of the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Specifically, we investigated motility of cells producing exclusively the archaeal swimming organelle, the archaellum. Archaella are structurally and in sequence similar to bacterial type IV pili involved in surface motility via pilus extension‐retraction cycles and not to rotating bacterial flagella. Unexpectedly, our studies reveal a novel type of behaviour for type IV pilus like structures: archaella rotate and their rotation drives swimming motility. Moreover, we demonstrate that temperature has a direct effect on rotation velocity explaining temperature‐dependent swimming velocity.  相似文献   

11.
The infectious ability of uropathogenic Escherichia coli relies on adhesive fibers, termed pili or fimbriae, that are expressed on the bacterial surface. Pili are multi-protein structures that are formed via a highly preserved assembly and secretion system called the chaperone-usher pathway. We have earlier reported that small synthetic compounds, referred to as pilicides, disrupt both type 1 and P pilus biogenesis in E. coli. In this study, we show that the pilicides do not affect the structure, dynamics or function of the pilus rod. This was demonstrated by first suppressing the expression of P pili in E. coli by pilicide treatment and, next, measuring the biophysical properties of the pilus rod. The reduced abundance of pili was assessed with hemagglutination, atomic force microscopy and Western immunoblot analysis. The biodynamic properties of the pili fibers were determined by optical tweezers force measurements on individual pili and were found to be intact. The presented results establish a potential use of pilicides as chemical tools to study important biological processes e.g. adhesion, pilus biogenesis and the role of pili in infections and biofilm formation.  相似文献   

12.
Type IV pili are surface organelles essential for pathogenicity of many Gram-negative bacteria. In Neisseria gonorrhoeae, the major subunit of type IV pili, PilE, is a target of its general O-linked glycosylation system. This system modifies a diverse set of periplasmic and extracellular gonococcal proteins with a variable set of glycans. Here we show that expression of a particular hexa-histidine-tagged PilE was associated with growth arrest. By studying intra- and extragenic suppressors, we found that this phenotype was dependent on pilus assembly and retraction. Based on these results, we developed a sensitive tool to identify factors with subtle effects on pilus dynamics. Using this approach, we found that glycan chain length has differential effects on the growth arrest that appears to be mediated at the level of pilin subunit-subunit interactions and bidirectional remodelling of pilin between its membrane-associated and assembled states. Gonococcal pilin glycosylation thus plays both an intracellular role in pilus dynamics and potential extracellular roles mediated through type IV pili. In addition to demonstrating the effect of glycosylation on pilus dynamics, the study provides a new way of identifying factors with less dramatic effects on processes involved in type IV pilus biogenesis.  相似文献   

13.
Pathogenic bacteria are specifically adapted to bind to their customary host. Disease is then caused by subsequent colonization and/or invasion of the local environmental niche. Initial binding of Haemophilus influenzae type b to the human nasopharynx is facilitated by Hib pili, filaments expressed on the bacterial surface. With three-dimensional reconstruction of electron micrograph images, we show that Hib pili comprise a helix 70 A in diameter with threefold symmetry. The Hib pilus filament has 3.0 subunits per turn, with each set of three subunits translated 26.9 A along and rotated 53 degrees about the helical axis. Amino acid sequence analysis of pilins from Hib pili and from P-pili expressed on uropathogenic Escherichia coli were used to predict the physical location of the highly variable and immunogenic region of the HifA pilin in the Hib pilus structure. Structural differences between Hib pili and P-pili suggest a difference in the strategies by which bacteria remain bound to their host cells: P-pili were shown to be capable of unwinding to five times their original length (E. Bullitt and L. Makowski, Nature 373:164-167, 1995), while damage to Hib pili occurs by slight shearing of subunits with respect to those further along the helical axis. This capacity to resist unwinding may be important for continued adherence of H. influenzae type b to the nasopharynx, where the three-stranded Hib pilus filaments provide a robust tether to withstand coughs and sneezes.  相似文献   

14.
Isolation and properties of pili from spores of Bacillus cereus.   总被引:1,自引:0,他引:1       下载免费PDF全文
Structures whose morphology is identical to that of bacterial pili have been isolated from spores of Bacillus cereus. The structures are absent from log-phase and sporulating cells. The pili are 6.8 nm in diameter, are of variable length, and appear to emanate randomly from the exosporium. Examination of spores from 12 Bacillus species showed that only those from B. cereus and B. thuringiensis have pili. Although isolated spore pili were shown to be composed of protein, their subunit nature was not discernible due to the extreme insolubility of the structure. An antiserum to spore pili was labeled with ferritin and used to examine the distribution of pilus antigen on the outer spore surface.  相似文献   

15.
Abstract Synechocystis CB3, isolated from the Gulf of Finland, was covered by innumerable flexible pili (fimbriae) with an approximate diameter of 6 nm. The Synechocystis CB3 pili had a tendency to attach side by side thus forming characteristic bundles consisting of several dozens of individual pilus filaments. The Synechocystis CB3 pili were isolated and purified using deoxycholate and urea, and found to be very similar to other bacterial pili in their subunit M r (21 kDa) and amino acid composition (46% hydrophobic amino acids). The amino acid analysis revealed also small amounts of glucosamine in the pilus preparation.  相似文献   

16.
Summary Atomic force microscopy (AFM) images of living cells in physiological solution were used to monitor the different stages involved in the interaction between Escherichia coli and the antimicrobial peptide PGLa. Damage on bacterial membranes was observed in the past using standard electron microscopy; stiffness measurements and images scanned in physiological solution demonstrate the advantage of AFM for such studies. From force versus separation curve measurements it is possible to determine the variation of the cellular stiffness. PGLa action on components of the cell structure like the outer membrane, the bacterial pili, the peptidoglycan wall and the inner membrane was determined by the comparison of AFM images of bacteria before and after PGLa addition. The interaction of Escherichia coli with PGLa in the culture medium has two stages. The first is characterized by the loss of surface stiffness and the formation of micelles probably originating from the disruption of the outer membrane and the loss of the bacteria’s ability to adhere to the substrates. In the second stage there is further damage, which resulted in total cell rupture. AFM images of bacteria in air and surface roughness measurements were also used to estimate peptide damage.  相似文献   

17.
Sun H  Zusman DR  Shi W 《Current biology : CB》2000,10(18):1143-1146
Although flagella are the best-understood means of locomotion in bacteria [1], other bacterial motility mechanisms must exist as many diverse groups of bacteria move without the aid of flagella [2-4]. One unusual structure that may contribute to motility is the type IV pilus [5,6]. Genetic evidence indicates that type IV pili are required for social gliding motility (S-motility) in Myxococcus, and twitching motility in Pseudomonas and Neisseria [6,7]. It is thought that type IV pili may retract or rotate to bring about cellular motility [6,8], but there is no direct evidence for the role of pili in cell movements. Here, using a tethering assay, we obtained evidence that the type IV pilus of Myxococcus xanthus functions as a motility apparatus. Pili were required for M. xanthus cells to adhere to solid surfaces and to generate cellular movement using S-motility. Tethered cells were released from the surface at intervals corresponding to the reversal frequency of wild-type cells when gliding on a solid surface. Mutants defective in the control of directional movements and cellular reversals (frz mutants) showed altered patterns of adherence that correlate reversal frequencies with tethering. The behavior of the tethered cells was consistent with a model in which the pili are extruded from one cell pole, adhere to a surface, and then retract, pulling the cell in the direction of the adhering pili. Cellular reversals would result from the sites of pili extrusion switching from one cell pole to another and are controlled by the frz chemosensory system.  相似文献   

18.
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8?M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-? axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.  相似文献   

19.
The immobilization of antibodies to sensor surfaces is critical in biochemical sensor development. In this study, Poly(ethylene glycol) (PEG) and Jeffamine spacers were employed to tether Escherichia coli K99 pilus antibody to silicon wafer surfaces for the purpose of improving the orientation of antibody as well as reducing the steric hindrance. To illustrate the effect of spacer length, a variety of linear polymers were used to covalently attach the antibodies to silicon surfaces. Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface morphology and chemical composition at each reaction step. The effect of spacer length in improving the specificity of immobilized antibody was investigated by attaching E. coli on the end of an AFM tip. The distribution of unbinding force and rupture distance from the force-distance curves obtained by AFM showed that the introduction of PEG spacer facilitates bacterial recognition which can improve the incidence of interactions by up to 90%. J600 proved to be the most effective spacer overcoming the steric hindrance seen with direct immobilization of antibody. In addition, the force spectroscopy reveals the elementary force quantum of E. coli-antibody to be 0.3 nN.  相似文献   

20.
Twitching motility is a unique form of bacterial propulsion on solid surfaces associated with cycles of extension, tethering and retraction of type IV pili (T4P). Although investigations over the last two decades in a number of species have identified the majority of the genes involved in this process, we are still learning how these pili are assembled and the mechanics by which bacteria use T4P to drag themselves from one place to another. Among the puzzles that remain to be solved is the mechanism by which hydrolysis of ATP is coupled to pilus assembly and disassembly, and how the cell envelope structure is modified to accommodate the passage of the pilus through the periplasm. Unravelling of these and other enigmas in the T4P system will not only teach us more about these important colonization and virulence factors, but also help us to understand related processes such as type II secretion, which relies on a set of proteins homologous to those in the T4P system, and bacterial conjugation, involving retractable pili belonging to the F-like subgroup of the type IV secretion family. This review focuses on recent discoveries relating to the assembly and function of T4P in generation of twitching motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号