首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subfamilies and tribes of the family Bovidae   总被引:7,自引:0,他引:7  
In this paper 112 skeletal characters in 27 living species of bovids are used in cladistic and phenetic analyses of the relationships among the tribes in the family. Consideration and modification of the cladistic analysis leads to the conclusion that bovids cluster around four foci in ascending evolutionary sequence: Boselaphini and allies; Antilopini and some Neotragini; the Caprinae; and a group of African antelopes containing Aepyceros , Alcelaphini, Reduncini and Hippotragini. This conclusion is quite closely compatible with the phenetic distance analysis of the same data, provided die latter is read as if primitive or early bovids share more similarities than divergently advanced ones and hence associate more closely. Given the primitiveness of Boselaphini and allies, the crucial finding is that Caprinae link with African antelopes and that Antilopini are more remote. Cladistic and phenetic analyses of 32 characters in 12 extinct bovid species produce similar groupings, but also throw doubt on the classification of Aepyceros , Reduncini and Hippotragini alongside Alcelaphini within a clade of African antelopes. As a result of these two sets of studies, of living and of extinct bovids, minimal alterations are proposed to the arrangement of bovid tribes. In addition, Saiga is placed in the Antilopini, and, with less assurance, Pelea in the Neotragini, Aepyceros in the Alcelaphinae, and Pantholops in the Caprinae. The contribution of the fossil record to understanding bovid evolution is considered.  相似文献   

2.
Some members of the gamma herpesvirus genus Macavirus are maintained in nature as subclinical infections in well-adapted ungulate hosts. Transmission of these viruses to poorly adapted hosts, such as American bison and cattle, can result in the frequently fatal disease malignant catarrhal fever (MCF). Based on phylogenetic analysis, the MCF viruses (MCFV) cluster into two subgroups corresponding to the reservoir hosts’ subfamilies: Alcelaphinae/Hippotraginae and Caprinae. Antibody cross-reactivity among MCFVs has been demonstrated using techniques such as enzyme linked immunosorbent and immunofluorescence assays. However, minimal information is available as to whether virus neutralizing antibodies generated against one MCFV cross react with other members of the genus. This study tested the neutralizing activity of serum and plasma from select MCFV-infected reservoir hosts against alcelaphine herpesvirus 1 (AlHV-1) and ovine herpesvirus 2 (OvHV-2). Neutralizing antibody activity against AlHV-1 was detected in samples from infected hosts in the Alcelaphinae and Hippotraginae subfamilies, but not from hosts in the Caprinae subfamily. OvHV-2 neutralizing activity was demonstrated in samples from goats (Caprinae) but not from wildebeest (Alcelaphinae). These results show that neutralizing antibody cross reactivity is present to MCFVs within a virus subgroup but not between subgroups. This information is important for diagnosing infection with MCFVs and in the development of vaccines against MCF.  相似文献   

3.
There is a huge data base of genetic information for the domestic artiodactyl speciesBos taurus(cow),Ovis aries(sheep), andCapra hircus(goat). However, the phylogenetic relationships of these economically critical taxa and their close relatives, family Bovidae, remain for the most part unresolved. In this report, we aligned new mitochondrial (mt) 12S and 16S ribosomal (r) DNA sequences from 26 bovid taxa with published sequences. Phylogenetic analyses of the more than 64 kilobases of mt rDNA from 57 taxa support a basal division in the Bovidae that separatesBosand its close relatives fromCapra, Ovis,and their kin. As suggested by previous molecular and morphological studies, “antelopes” are a paraphyletic assemblage. Caprinae (sheep, goats, goat antelopes, and musk oxen) groups consistently with hippotragine and alcelaphine antelopes, while Bovini (cattle and buffaloes) clusters with tragelaphine and boselaphine antelopes. The traditional tribal subdivisions of Bovidae are supported in most cases, but there are exceptions within Caprinae and Antilopinae (gazelles and close relatives). The rDNA data consistently place the enigmatic generaPelea, Pantholops,andSaiga,but the origin ofAepyceros,the impala, remains obscure. Combined phylogenetic analyses of the rDNA data with the skeletal characters of Gentry (1992) were used to assess the stability of the molecular results.  相似文献   

4.
Conflicting classifications for the Corallinales were tested by analyzing partial sequences for the nuclear small-subunit ribosomal RNA (SSU) gene of 35 species of coralline algae. Parsimony and likelihood analyses of these data yielded congruent hypotheses that are inconsistent with classifications for the group that include as many as eight subfamilies. Four major clades are resolved within the order, including the early-diverging Sporolithaceae as well as the Melobesioideae and Corallinoideae. The fourth clade, which is supported robustly, includes both nongeniculate and geniculate species classified in the subfamilies Mastophoroideae, Metagoniolithoideae, Lithophylloideae, and Amphiroideae. Molecular and morphological data support the proposal that the latter two subfamilies are sister taxa. Although relationships among some genera are not resolved clearly, the order of branching of taxa among and within the four principal lineages is concordant with paleontological evidence for the group. Relationships inferred among genera within each of the clades is discussed. Seven morphological characters delimiting higher taxonomic groups within the order were combined with the sequence data, analyzed, and optimized onto the resulting tree(s). Except for the presence or absence of genicula, all other characters were found to be phylogenetically informative. Genicula are nonhomologous structures that evolved independently in the Amphiroideae, Corallinoideae, and Metagoniolithoideae. The phenetic practice of separating coralline algae into two categories solely on the basis of the presence or absence of genicula does not accurately reflect the evolutionary history of the group.  相似文献   

5.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

6.
The nucleotide sequence of the complete mitochondrial cytochrome b gene has been determined and compared for 51 species of the family Bovidae and 10 potential pecoran and tragulid outgroups. A detailed saturation analysis at each codon position relative to the maximum parsimony procedure indicates that all transitions on third codon positions do not accumulate in a similar fashion: C-T are more saturated than A-G substitutions. The same trend is observed for second positions but not for first positions where A-G and C-T transitions exhibit roughly the same levels of saturation. Maximum parsimony reconstructions were weighted according to these observations. Maximum parsimony, maximum likelihood, and distance phylogenetic reconstructions all depict a major split within Bovidae. The subfamily Bovinae includes four multifurcating tribes and subtribes: Boselaphini, Tragelaphini, cattle-Bovini (Bos and Bison), and buffalo-Bovini (Bubalus and Syncerus). Its sister group is the subfamily Antilopinae, i.e., all non-Bovinae taxa, represented by seven lineages: Antilopini (including Saiga), Caprini sensu lato (i. e., Caprinae including Pantholops), Hippotragini, Alcelaphini, Reduncini (including Pelea), Aepyceros possibly linked to Neotragus, and Cephalophini possibly linked to Oreotragus (the suni and the klipspringer being members of a polyphyletic Neotragini). These various tribes and major lineages were produced by two noteworthy explosive radiations, which occurred simultaneously between 12.0 and 15.3 MY (Middle Miocene) in the subfamilies Bovinae and Antilopinae.  相似文献   

7.
Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding   总被引:5,自引:0,他引:5  
An extensive G-banding study of karyotypes of 12 species of Bovidae has been undertaken in an attempt to trace homologies and patterns of evolution of karyotype phenotypes throughout the family. G-banding profiles revealed a considerable degree of chromosome-arm homology throughout the group, which also extended into the related superfamilies, the Giraffoidea and Cervoidea. The conservation of banding patterns in chromosome arms strongly indicates that Robertsonian translocation type rearrangements have provided the major source of interspecies karyotype differences, with inversions and reciprocal and tandem translocations providing relatively minor contributions. Examples of individuals carrying newly arisen Robertsonian translocations are not infrequent, and in one instance there was evidence that two similar rearrangements had arisen independently in two species. Despite the extensive changes in karyotype organization, subfamilies within the Bovidae were characterized by the presence of common rearrangements, and those involving autosomal pairs 11 and 12 of the ox, as well as the X chromosome, separate the Bovinae from the Caprinae and Hippotraginae.  相似文献   

8.
The family Bovidae is characterized by an incomplete fossil record for the period during which most bovid subfamilies emerged. This, coupled to extensive morphological convergence among species, has given rise to inconsistencies in taxonomic treatments, especially at the tribal and subfamilial levels. In an attempt to clarify some of these issues we analyzed the complete mtDNA cytochrome b gene (1140 bp) from 38 species/subspecies representing at least nine tribes and six subfamilies. Specific emphasis was placed on the evolution of the Alcelaphini (hartebeest and wildebeest), the Tragelaphini (kudu, eland, and close allies), the Antilopini (gazelles), and the Neotragini (dwarf antelope). Saturation plots for the codon positions revealed differences between bovid tribes and this allowed for the exclusion of transitional substitutions that were characterized by multiple hits. There was no significant rate heterogeneity between taxa. By calibrating genetic distance against the fossil record, a transversion-based sequence divergence of 0.22% (+/-0.015%) per million years is proposed for cytochrome b clock calibrations in the Bovidae. All evidence suggests that the Alcelaphini form a monophyletic group; there was no support for the recognition of the Lichtenstein's hartebeest in a separate genus (Sigmoceros), and the acceptance of the previously suggested Alcelaphus is recommended for this species. High bootstrap support was found for a sister taxon relationship between Alcelaphus and Damaliscus, a finding which is in good agreement with allozyme and morphological studies. In the case of the Tragelaphini, the molecular data suggest the inclusion of Taurotragus in the genus Tragelaphus, and no genetic support was found for the generic status of Boocercus. Although associations within the Antilopinae (comprising the tribes Neotragini and Antilopini) could not be unequivocally resolved, there was nonetheless convincing evidence of non-monophyly for the tribe Neotragini, with the Suni antelope (Neotragus moschatus) grouping as a sister taxon to the Impala (Aepyceros melampus, tribe indeterminate, sensu Gentry, 1992) and the Klipspringer (Oreotragus oreotragus) falling within the duiker antelope tribe (Cephalophini).  相似文献   

9.
A total of 7,806 nucleotide positions derived from one mitochondrial and eight nuclear DNA segments were used to provide a robust phylogeny for members of the order Artiodactyla. Twenty-four artiodactyl and two cetacean species were included, and the horse (order Perissodactyla) was used as the outgroup. Limited rate heterogeneity was observed among the nuclear genes. The partition homogeneity tests indicated no conflicting signal among the nuclear genes fragments, so the sequence data were analyzed together and as separate loci. Analyses based on the individual nuclear DNA fragments and on 34 unique indels all produced phylogenies largely congruent with the topology from the combined data set. In sharp contrast to the nuclear DNA data, the mtDNA cytochrome b sequence data showed high levels of homoplasy, failed to produce a robust phylogeny, and were remarkably sensitive to taxon sampling. The nuclear DNA data clearly support the paraphyletic nature of the Artiodactyla. Additionally, the family Suidae is diphyletic, and the nonruminating pigs and peccaries (Suiformes) were the most basal cetartiodactyl group. The morphologically derived Ruminantia was always monophyletic; within this group, all taxa with paired bony structures on their skulls clustered together. The nuclear DNA data suggest that the Antilocaprinae account for a unique evolutionary lineage, the Cervidae and Bovidae are sister taxa, and the Giraffidae are more primitive.  相似文献   

10.
Evolution and biogeography of Alectryon (Sapindaceae).   总被引:1,自引:0,他引:1  
Phylogenetic analysis of nucleotide sequences from four plastid loci (matK, partial trnK-matK introns, rps16 intron) and one nuclear locus (the internal transcribed spacer of rDNA; ITS-1) was conducted for 14 species of Alectryon and five related genera in Sapindaceae. Both matK and rps16 intron provide few informative characters within Alectryon, whereas ITS-1 provides the largest number of parsimony-informative characters and has the greatest sequence divergence between taxa. Support for branches in cladograms produced in PAUP increased markedly upon inclusion of ITS-1 data to matK and rps16 intron data. Analyses of each region alone or combined produced congruent results, suggesting that the regions are complementary. Phylogenetic analysis indicates that there are two main lineages within Alectryon, with A. subcinereus sister to the remaining sampled Alectryon taxa. Two morphological characters, presence/absence of petals and aril patterning, are congruent with the molecular phylogeny. One robustly supported clade is characterized by smooth arils and petals, in contrast to the taxa in the other major clade which have patterned arils and an absence of petals. These analyses also support a number of revised subgeneric groupings for Alectryon. The decision to submerge Heterodendrum in Alectryon is supported, although taxa belonging to Heterodendrum do not form a clade. The majority of the Australian Alectryon appear to belong to the tropical monsoonal/arid flora with species from both lineages being found in representative vine thickets across northern Australia. It appears that the seasonally dry rainforest communities comprise a number of elements that do not share common evolutionary histories within this genus.  相似文献   

11.
H Oboussier 《Acta anatomica》1979,104(4):374-381
The size of the hypophysis, especially of the anterior lobe, is related to body size while the nervous lobe is related to the brain weight. The anterior lobe of the hypophysis in domestic animals is smaller than that of their ancestors in the wild. The proportions of the body, the distribution of bulk, as they appear in different races--whippets and bulldogs--are related to the size of the anterior lobe. Same body weight implies that the anterior lobe is nearly twice as large in animals with a compact body structure. These intraspecific results can also be shown interspecificly by comparing the species of African Bovidae. Independent of the influence of body size, the subfamilies Alcelaphinae and Hippotraginae possess a larger anterior lobe. A tendency can be shown for a relation to body structure as short-legged species living on marshy grounds (Kobus) or soft sands (Addax) have larger anterior lobes.  相似文献   

12.
Phylogenetic relationships between 32 species of rodents representing 14 subfamilies of Muridae and four subfamilies of Dipodidae were studied using sequences of the nuclear protein-coding genes Lecithin Cholesterol Acyl Transferase (LCAT) and von Willebrand Factor (vWF). An examination of some evolutionary properties of each data matrix indicates that the two genes are rather complementary, with lower rates of nonsynonymous substitutions for LCAT. Both markers exhibit a wide range of GC3 percentages (55%-89%), with several taxa above 70% GC3 for vWF, which indicates that those exonic regions might belong to the richest class of isochores. The primary sequence data apparently harbor few saturations, except for transitions on third codon positions for vWF, as indicated by comparisons of observed and expected pairwise values of substitutions. Phylogenetic trees based on 1,962 nucleotidic sites from the two genes indicate that the 14 Muridae subfamilies are organized into five major lineages. An early isolation leads to the clade uniting the fossorial Spalacinae and semifossorial Rhizomyinae with a strong robustness. The second lineage includes a series of African taxa representing nesomyines, dendromurines, cricetomyines, and the sole living member of mystromyines. The third one comprises only the mouselike hamster CALOMYSCUS: The fourth clade represents the cricetines, myospalacines, sigmodontines, and arvicolines, whereas the fifth one comprises four "traditional" subfamilies (Gerbillinae, Murinae, Otomyinae, and Acomyinae). Within these groups, we confirm the monophyly of almost all studied subfamilies, namely, Spalacinae, Rhizomyinae, Nesomyinae, Cricetomyinae, Arvicolinae, Sigmodontinae, Cricetinae, Gerbillinae, Acomyinae, and Murinae. Finally, we present evidence that the sister group of Acomyinae is Gerbillinae, and we confirm a nested position of Myospalacinae within Cricetinae and Otomyinae within Murinae. From a biogeographical point of view, the five main lineages spread and radiated from Asia with different degrees of success: the first three groups are now represented by a limited number of species and genera localized in some regions, whereas the last two groups radiated in a large variety of species and genera dispersed all over the world.  相似文献   

13.
Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.  相似文献   

14.
Scrophulariaceae is one of the families that has been divided extensively due to the results of DNA sequence studies. One of its segregates is a vastly enlarged Plantaginaceae. In a phylogenetic study of 47 members of Plantaginaceae and seven outgroups based on 3561 aligned characters from four DNA regions (the nuclear ribosomal ITS region and the plastid trnL-F, rps16 intron, and matK-trnK intron regions), the relationships within this clade were analyzed. The results from parsimony and Bayesian analyses support the removal of the Lindernieae from Gratioleae to a position outside Plantaginaceae. A group of mainly New World genera is paraphyletic with respect to a clade of Old World genera. Among the New World taxa, those offering oil as a pollinator reward cluster together. Ourisia is sister to this clade. Gratioleae consist of Gratiola, Otacanthus, Bacopa, Stemodia, Scoparia, and Mecardonia. Cheloneae plus Russelia and Tetranema together constitute the sister group to a clade predominantly composed of Old World taxa. Among the Old World clade, Ellisiophyllum and Lafuentea have been analyzed for the first time in a molecular phylogenetic analysis. The former genus is sister to Sibthorpia and the latter is surprisingly the sister to Antirrhineae.  相似文献   

15.
Monkey beetles (Hopliini) are a large clade of flower and leaf feeding species within the Scarabaeidae (chafers) with greatest diversity in southern Africa. Their internal relationships and sister group affinities have not been studied with DNA methods. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 158 species, representing most recognized subfamilies of Scarabaeidae, including 46 species of Hopliini. Combined analyses using maximum likelihood and Bayesian inference under the two preferred alignment parameters recovered the Hopliini as monophyletic. Hopliines were inserted at the base of a clade of Cetoniinae+Rutelinae+Dynastinae, being either recovered as their immediate sister group, or as part of an expanded set of basal branches that also includes the tribe Macrodactylini which has been classified as part of the Melolonthinae (may chafers). At the level of subtribes, we found Hopliina paraphyletic with respect to Pachycnemina which also includes the monophyletic clade of Heterochelina and Gymnolomina. Trait mapping under parsimony on the preferred tree resulted in inferences of three independent origins of sexual dimorphism, which coincided with shifts to 'flower-embedding' pollination. In contrast, night active taxa, which are general phyllophages as other pleurostict chafers, never show clear sexual dimorphism. South African lineages include several deep-branching lineages. The exceptional morphological and phylogenetic diversity of the South African fauna may therefore be due to their antiquity, in addition to sexual selection in the day-active lineages. Phylogenetic studies of the endemic South African plant radiations have demonstrated the repeated evolutionary shift to beetle pollination, but it remains to be investigated if this is driven by the hopliine pollinators present in the bioregion or by a propensity of the local plant lineages favoring this pollination syndrome.  相似文献   

16.
The evolution of the ‘therevoid’ clade, with an emphasis on window flies (Scenopinidae), is presented by combining DNA sequence data with morphological characters for living and fossil species. The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. A comprehensive phylogenetic analysis using parsimony and likelihood methods was undertaken using extensive taxon sampling from all families and subfamilies, and compared with outgroup taxa sampled from the related families Asilidae, Mydidae, Apioceridae and Empididae. Fifty‐nine morphological characters (adult, larval and pupal) were combined with 6.4 kb of DNA sequences for two ribosomal genes (16S and 18S ribosomal DNA) and three protein‐encoding genes [cytochrome oxidase I (COI), triose phosphate isomerase (TPI) and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase (CAD)]. Results from combined analyses of morphological and molecular data for 78 taxa representing all families of the therevoid clade are presented. Specific hypotheses of the relationship between respective families and subfamilies were tested statistically using four‐cluster likelihood mapping. The therevoid clade is a well‐supported monophyletic group within Asiloidea, with Evocoidae sister to Apsilocephalidae and Therevidae sister to Scenopinidae. Temporal and zoogeographical aspects of therevoid clade evolution were investigated using Bayesian divergence time estimates and Lagrange ancestral range scenarios. The effect of inclusion of fossils as terminal taxa on phylogenetic and divergence time estimation was investigated, with morphological scoring for fossil representatives included in the analyses rather than used simply as minimum age constraints. In each analysis there was either improvement in estimation, or only marginal and localized loss in tree resolution, and with younger estimates of divergence time across the tree. The historical biogeography of the therevoid clade was examined with multiple trans‐Antarctic vicariance events between Australasia and South America evident during the Late Cretaceous to early Palaeogene. Scenopininae is newly subdivided into two tribes, Metatrichini trib.n. and Scenopinini Fallén stat.r. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:4974EBF8‐3117‐4189‐B6DE‐7D5BF9B23E53 .  相似文献   

17.
The evolutionary history of the bovid subfamily Antilopinae is unclear. Traditionally, this subfamily is subdivided into two tribes: Neotragini (dwarf antelopes) and Antilopini (gazelles and their relatives). Here, we report new sequences for the 12S and 16S rRNA genes in the enigmatic antilopine taxa Procapra gutturosa and Saiga tatarica and analyze the phylogenetic relationships of these taxa relative to other antilopines. Our study demonstrates the close affinity of the saiga antelope to Gazella despite the conventional systematic allocation of Saiga to the Caprinae subfamily. The second member of the Saigini tribe, Pantholops hodgsoni (Tibetan gazelle), falls within Caprinae. In all of our analyses, Procapra gutturosa occupied a basal position in the Antilopinae clade or was a sister-group to the dwarf antelope Madoqua. This suggests early separation of Procapra from other antelopes.  相似文献   

18.
We describe a phylogeny of the Bovidae based on 40 allozyme loci in 27 species, representing 10 of the 14 bovid tribes described by Vrba (1985). Giraffe represented a related family (Giraffidae). A phenogram was derived using the unweighted pair-group method with arithmetic means (UPGMA), based on Nei's genetic distances (ND) between species. A tree was also derived using the neighbor-joining technique, also based on ND. To provide a cladistic interpretation, the data were analyzed by a maximum parsimony method (phylogenetic analysis using parsimony, PAUP). We found marked divergence within the Bovidae, consistent with the appearance of the family in the early Miocene. Unexpectedly, the most divergent species was the impala, which occupied a basal position in all trees. Species in the tribe Alcelaphini were the most derived taxa in all trees. These patterns conflict strongly with the previous taxonomic alliance, based on immuno-distance and anatomical evidence, of the impala as a sister group of the Alcelaphini. All trees agreed that tribes described by Vrba (1985) are monophyletic, except the Neotragini, which was polyphyletic, with suni occupying a long branch by itself. The dikdik and klipspringer were consistently placed as sister taxa to species in the Antilopini. Three tribes (Aepycerotini, Tragelaphini and Cephalophini), whose fossils have not been found outside Africa, were basal in all trees, suggesting that bovids originated in Africa. Nodes connecting the remaining tribes were closely clustered, a pattern that agrees with fossil evidence of rapid divergence within the Bovidae in the mid-Miocene (about 15 mybp). The allozyme data suggested a second phase of rapid divergence within tribes during the Plio-Pleistocene, a pattern that also agrees with fossil evidence. Rates of bovid divergence have therefore been far from constant. However, the clustering of nodes imparts considerable uncertainty to the branching order leading to the derived tribes, and to a lesser extent, species within tribes. The classical division of the Bovidae into the Boodontia and Aegeodontia does not agree with the phylogenetic grouping of tribes presented in this analysis. However, the maximum parsimony tree derived using ‘local’ branch swapping clustered all grazing species into a derived, monophyletic group, suggesting that grazing may have evolved only once in bovid evolution.  相似文献   

19.
A taxonomic division of the family Bovidae (Artiodactyla) is difficult and the evolutionary relationships among most bovid subfamilies remain uncertain. In this study, we isolated the cattle satellite I clone BTREP15 (1.715 satellite DNA family) and autosomal centromeric DNAs of members of ten bovid tribes. We wished to determine whether the analysis of fluorescence in situ hybridization patterns of the cattle satellite I clone (BTREP15) and tribe-specific centromeric repeats isolated by laser microdissection would help to reveal some of the ambiguities occurring in the systematic classification of the family Bovidae. The FISH study of the presence and distribution of the cattle satellite I clone BTREP15 (1.715 satellite DNA family) within members of ten bovid tribes was not informative. FISH analysis of autosomal centromeric DNA probes in several species within one tribe revealed similar hybridization patterns in autosomes confirming tribal homogeneity of these probes. Sex chromosomes showed considerable variation in sequence composition and arrangement not only between tribes but also between species of one tribe. According to our findings it seems that Oreotragus oreotragus developed its own specific satellite DNA which does not hybridize to any other bovid species analysed. Our results suggest O. oreotragus as well as Aepyceros melampus may be unique species not particularly closely related to any of the recognized bovid tribes. This study indicates the isolation of tribe-specific centromeric DNAs by laser microdissection and cloning the sequence representing the main motif of these repetitive DNAs could offer the perspectives for comparative phylogenetic studies.  相似文献   

20.
The clade of garter snakes (Thamnophis) includes some of the most abundant and well-studied snakes in North America. However, phylogenetic relationships within this group have been little studied. We used DNA sequences of four mitochondrial genes (cytochrome b and NADH dehydrogenase subunits 1, 2, and 4) to estimate relationships among 29 of the 31 recognized species of Thamnophis plus the related species Adelophis foxi. Both maximum parsimony (MP) and maximum-likelihood (ML) analyses of all these genes combined produced well-resolved trees with moderate (70-89%) to strong (90-100%) bootstrap support for most clades. MP and ML trees were very similar, with no strongly supported conflict between the two analyses. These analyses identify a clade of 12 species largely restricted to México (the "Mexican clade"), and a clade containing 15 species that collectively range from Central America to southern Canada (the "widespread clade"). These two groups are identified as sister taxa in both MP and ML analyses. A clade consisting of the ribbon snakes (T. sauritus and T. proximus) and the common garter snake (T. sirtalis) is placed as the sister group to all other Thamnophis (i.e., the Mexican + widespread clades) in our analyses. High bootstrap proportions at several levels in the tree support the inclusion of both Thamnophis validus, which has traditionally been placed in the genus Nerodia, and the poorly known species Adelophis foxi within Thamnophis. We used randomly sampled characters (i.e., standard bootstrapping) and randomly sampled contiguous blocks of characters to examine the effect of number of characters on resolution of and support for relationships within Thamnophis using MP. In general, these analyses indicate that we have reached a point of strongly diminishing returns with respect to the effect of adding mtDNA sequence characters for the current set of taxa; our sample of 3809 mtDNA characters is apparently "enough." The next steps to improve the phylogenetic estimate may be to add nuclear DNA sequences, morphology, or behavior, or to sequence additional mtDNA lineages within species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号