首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat liver cytosol contains a neutral protease which degrades acetylated hemoglobin and some urea-denatured proteins maximally at pH 7.5. The enzyme was purified to homogeneity by conventional chromatographic techniques. It appears to be a metalloprotease since it is inhibited by EDTA and o-phenanthroline, the metal-depleted enzyme can be reactivated by Co2+, Zn2+, Mn2+, or Mg2+, and it is not inhibited by reagents specific for carboxyl, seryl, or thiol proteases. The enzyme has an apparent molecular weight of 200,000 as determined on Sephacryl S-200 column chromatography, and electrophoresis in sodium dodecyl sulfate showed 3 protein bands corresponding to the molecular weights of 110,000, 74,000, and 40,000.  相似文献   

2.
Human articular cartilage contains very low levels of metalloprotease activity; the activity in 1 g of cartilage is approximately equivalent to the activity of 1 microgram of trypsin. Development of a sensitive assay, based on the digestion of radioactive proteoglycan, has made it possible to study protease activity in 1-2-g specimens of cartilage. Cartilage was extracted with Tris buffer in the cold and with Tris buffer containing 10 mM CaCl2 at 60 degrees C. The extracts were passed through Sepharose 6B; two major and two minor metalloprotease activities were detected. A neutral metalloprotease activity, pH optimum 7.4, was found as a latent form of Mr = 56,000. It could be activated with aminophenylmercuric acetate or trypsin with a resultant decrease of Mr to 40,000. An acid metalloprotease, pH optimum 5.3, also occurred as a latent form of Mr = 50,000. Activation converted this to Mr = 35,000. Removal of calcium ions by dialysis reduced the activity of the neutral enzyme by 80-85% and of the acid enzyme by 100%. Both activities were restored by 10 mM Ca2+. Both enzymes were completely inhibited by 1 mM o-phenanthroline in the presence of excess calcium. This inhibition was overcome by 1 mM Zn2+ and, to a lesser extent, by Co2+. These proteases may be important in the metabolism of the cartilage matrix and in its destruction in osteoarthritis.  相似文献   

3.
A post-translational processing assay of the precursor to the yeast F1-ATPase subunit has been utilized to examine a mitochondrial endoprotease which cleaves this subunit precursor to the size of a mature subunit. The endoprotease is extracted from purified mitochondria as a soluble complex of Mr = 115,000 which is composed of subunits of lower molecular weight when examined on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It exhibits a pH optimum of between pH 7 and 8 and is inactive at pH 6.5 and below. The mitochondrial endoprotease is insensitive to serine esterase inhibitors, but is inhibited by EDTA and o-phenanthroline. Restoration of precursor subunit processing activity in the presence of metal chelators is strictly dependent on excess Co2+ and Mn2+ over other heavy metals examined. These and additional data indicate that this soluble metallo endoprotease is involved in the processing of other cytoplasmically synthesized precursor subunits of the ATPase complex in addition to the subunit 2 precursor. The role of this processing enzyme in the assembly of mitochondrial inner membrane complexes is discussed in light of the current model of mitochondrial biogenesis.  相似文献   

4.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

5.
The nonsterile environment of the oral cavity facilitates substantial proteolytic processing, not only of resident salivary proteins but also of dietary proteins. To gain insight into whole saliva enzymatic processes, the in vivo generated peptides in this oral fluid were subjected to nano-flow liquid chromatography electrospray ionization tandem mass spectrometry. The 182 peptides identified were predominantly derived from acidic and basic proline-rich proteins, statherin, and histatins. The proteolytic cleavages in the basic proline-rich proteins occurred preferentially after a Gln residue with predominant specificity for the tripeptide Xaa-Pro-Gln, where Xaa in the P(3) position was mostly represented by Lys. Using the synthetic substrates Lys-Pro-Gln-pNA and Gly-Gly-Gln-pNA, the overall K(m) values were determined to be 97 +/- 7.7 and 611 +/- 28 microm, respectively, confirming glutamine endoprotease activity in whole saliva and the influence of the amino acids in positions P(2) and P(3) on protease recognition. The pH optimum of Lys-Pro-Gln-pNA hydrolysis was 7.0, and the activity was most effectively inhibited by antipain and 4-(2-aminoethyl) benzenesulfonyl fluoride, was metal ion-dependent, and not inhibited by cysteine protease inhibitors. A systematic evaluation of enzyme activities in various exocrine and nonexocrine contributors to whole saliva revealed that the glutamine endoprotease is derived from dental plaque and likely microbial in origin. The P(1) site being occupied by a Gln residue is a nonarchetype with respect to known proteases and indicates the presence of novel glutamine-specific endoprotease(s) in oral fluid.  相似文献   

6.
Bovine liver dihydropyrimidine amidohydrolase (EC 3.5.2.2) has been subjected to atomic absorption analysis. Three different preparations of homogeneous enzyme indicated that the enzyme contains 4.3 +/- 0.3 g atoms of Zn2+ per mol of enzyme or 1.1 g atoms of Zn2+ per subunit. No Co2+, Mn2+, Mg2+ or Cd2+ was detected. Exhaustive dialysis against either o-phenanthroline or EDTA did not reduce enzyme activity; however, prolonged incubation with dipicolinic acid resulted in inactivation which can be reversed by either Zn2+ or Co2+ but not Mg2+.  相似文献   

7.
Escherichia coli HtpX is a putative membrane-bound zinc metalloprotease that has been suggested to participate in the proteolytic quality control of membrane proteins in conjunction with FtsH, a membrane-bound and ATP-dependent protease. Here, we biochemically characterized HtpX and confirmed its proteolytic activities against membrane and soluble proteins. HtpX underwent self-degradation upon cell disruption or membrane solubilization. Consequently, we purified HtpX under denaturing conditions and then refolded it in the presence of a zinc chelator. When supplemented with Zn2+, the purified enzyme exhibited self-cleavage activity. In the presence of zinc, it also degraded casein and cleaved a solubilized membrane protein, SecY. We verified its ability to cleave SecY in vivo by overproducing both HtpX and SecY. These results showed that HtpX is a zinc-dependent endoprotease member of the membrane-localized proteolytic system in E. coli.  相似文献   

8.
We showed, using the method of lysis of fibrin plates and five substrate proteins in a thin layer of agar gel, that inorganic orthophosphate (0.001-0.06 M) enhances by 50-250% the activatory functions of streptokinase, urokinase, and tissue plasminogen activator and, in general, by 1.2-12.0 times enhances protein lysis by trypsin, alpha-chymotrypsin, subtilisin, papain, bacterial metalloprotease, and even pepsin at a concentration < 4 mM. At higher concentrations, phosphate sharply inhibited pepsin activity and inhibited by 40-50% gelatin lysis by papain and gelatin (at a peak concentration) and casein lysis by metalloprotease. Inorganic pyrophosphate ions at concentrations of 10(-8)-10(-1) M enhanced the cleavage of a number of proteins by serine proteases and, at concentrations of 10(-5) -10(-3) M, the activities of pepsin, plasminogen tissue activator, and streptokinase by 100 and 40%, respectively. The pyrophosphate concentrations of > 10(-3) and >10(-4) M inhibited pepsin- and metalloprotease-induced lysis of virtually all proteins. ATP increased casein lysis by serine proteases, metalloprotease, and pepsin by 20-60% at concentration of 10(-3) M and by 30-260% at 10(-2) M concentration. At concentrations of 10-2 M, it inhibited the cleavage of some proteins by trypsin, chymotrypsin, papain, and metalloprotease by 20-100%, and, at concentrations of 10(-3) M, lysis of albumin with pepsin and other proteins (except for fibrinogen) by metalloprotease. A GTP concentration of 10(-7)-10(-2) M increased protein degradation by serine proteases, papain, and gelatin lysis by pepsin by 20-90%, whereas albumin lysis was inhibited by 40-70%. The presence of 10(-6)-10(-5) M GTP led to a slightly increased degradation of hemoglobin and casein by bacterial metalloprotease, while 10(-3) M GTP induced a drop in the activity of the metalloprotease by 20-50%. ADP could enhance gelatin lysis by trypsin, casein lysis by pepsin and papain, and inhibited metalloprotease activity by 20-100% (at 10(-3) M). Peculiarities of the effects of AMP and GD(M)P on gelatin lysis were found.  相似文献   

9.
J C Monboisse  J Labadie  P Gouet 《Biochimie》1979,61(10):1169-1175
The Acinetobacter spec collagenase has been almost completely purified. This enzyme is a true collagenase the activity of which is high on collagen. The enzyme is active on insoluble collagen, gelatin and the synthetic Pz-peptide, but has no proteolytic activity on casein or bovine serum-albumin. The collagenase was obtained on a simple medium with gelatin and yeast extract. The enzyme was purified by (NH4)2SO4 precipitation. DEAE cellulose column chromatography, Sephadex G 200 gel-filtration. The molecular weight of the enzyme was found to be 102 000 daltons, and its isoelectric point was found to be 7,7 +/- 0,2. The optimum pH and temperature for insoluble collagen hydrolysis were 7.6 and 37 degrees C, respectively; so, this collagenase corresponds to true collagenase. Hydrolysis of Pz-peptide is activated by Ca2+ and inhibited by metal ions (Cu2+, Fe3+, Zn2+, Pb2+, Hg2+). EDTA and o-phenanthroline induced a very significant reduction in enzyme activity. Iodoacetate and p-CMB induced a slight reduction in enzyme activity only at high concentrations (10-2M). The collagenase is most stable for temperatures less than or equal to 50 degrees C.  相似文献   

10.
Methionine aminopeptidase (MAP), which catalyzes the removal of NH2-terminal methionine from proteins, was isolated from Saccharomyces cerevisiae. The enzyme was purified 472-fold to apparent homogeneity. The Mr of the native enzyme was estimated to be 36,000 +/- 5,000 by gel filtration chromatography, and the Mr of the denatured protein was estimated to be 34,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 7.0, and its pI is 7.8 as determined by chromatofocusing on Mono P. The enzyme was inactivated by metalloprotease inhibitors (EDTA, o-phenanthroline and nitrilotriacetic acid), sulfhydryl-modifying reagents (HgCl2 and p-hydroxymercuribenzoic acid), and Zn2+. Yeast MAP failed to cleave methionine p-nitroanilide. Among 11 Xaa-Ala-Ser analogues (Xaa = Ala, Asp, Gln, Glu, Ile, Leu, Lys, Met, Phe, Pro, and Ser), MAP cleaved only Met-Ala-Ser. MAP also cleaved methionine from other tripeptides whose penultimate amino acid residue is relatively small and/or uncharged (e.g. Pro, Gly, Val, Thr, or Ser) but not when bulky and/or charged (Arg. His, Leu, Met, or Tyr). Yeast MAP displayed similar substrate specificities compared with those of Escherichia coli (Ben-Bassat, A., Bauer, K., Chang, S.Y., Myambo, K., Boosman, A., and Chang, S. (1987) J. Bacteriol. 169, 751-757) and Salmonella typhimurium MAP (Miller, C., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G. J., Werlen, R. C., Garber, P., and Movva, N. R. (1987) Proc. Natl, Acad. Sci. U.S.A. 84, 2718-2722). In general, the in vitro specificity of yeast MAP is consistent with the specificity observed in previous in vivo studies in yeast (reviewed in Arfin, S. M., and Bradshaw, R. A. (1988) Biochemistry 27, 7979-7984).  相似文献   

11.
Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.  相似文献   

12.
Previous studies have described the isolation of a new metalloprotease with a strict specificity for the amide bonds of peptide substrates having a threonine residue at the P1' position [Biochem. Biophys. Res. Commun. 256 (1999) 307]. The present work reports the physico-chemical properties of the enzyme which enable the optimal conditions for the digestion of proteins by the protease to be determined. At pH 8.2 and up to 37 degrees C, the enzyme possesses a good proteolytic activity and is stable for at least 12 h. The protease is sensitive to detergents and dithiol-reducing agents so that these chemicals must be eliminated after treatment of the protein substrate when this needs to be denatured and reduced before its hydrolysis by the enzyme. An increase in the enzymatic activity is observed in the presence of urea up to a 2.0 M concentration, beyond which the activity decreases. The enzyme can also be used in the presence of organic solvents such as acetonitrile, isopropanol or dioxane (10%, v/v) without loss of activity. Studies performed with antibodies raised against the purified endoprotease Thr-N indicated the absence of cross-immunoinactivation and cross-immunoprecipitation with all tested proteases. Also, no homology of sequence was found with the proteases indexed in the databases. Thus, our results show that endoprotease Thr-N not only represents an original protease by its unique specificity but also by its immunological and molecular properties.  相似文献   

13.
Liver glucosidase II from control and ethanol-treated rats was purified and its physical and catalytic properties studied. No significant variation was found in the purification and properties of the enzyme from either source (ethanol-treated and control rats), except for activity after storage. Glucosidase II was purified to electrophoretic homogeneity from liver microsomes by solubilization, protamine sulphate precipitation, and anion exchange (DEAE-Sephacel) and affinity (Con A-Sepharose-4B) chromatographies. The native enzyme molecule is a tetramer (Mr 425 +/- 10 kDa) with identical subunits (Mr 106 +/- 3 kDa). Km values, determined at pH 6.8 for the p-nitrophenyl-glucosidase activity of glucosidase II from control and ethanol-treated rats, were 1.20 +/- 0.12 and 1.14 +/- 0.13 mM, respectively. The Arrhenius plot was linear, and the value for the apparent activation energy, calculated from this plot, was 56.64 kJ/mol. The p-nitrophenyl-glucosidase activity of glucosidase II from control and ethanol-treated rats was inhibited to the same extent by NH4+, by the divalent cations Ca2+ and Mg2+, and by methanol, ethanol, 2-propanol, n-propanol, isobutanol and n-butanol.  相似文献   

14.
A fibrinolytic metalloprotease has been purified from the fruiting bodies of the edible honey mushroom (Armillariella mellea). The enzyme has a molecular weight of 18538.1508, as measured by MALDI-TOF mass spectrometry and includes Zn2+ ion as found by ICP/MS. The N-terminal amino acid sequence, XXYNGXTXSRQTTLV, do not match any known protein or open reading frame. It hydrolyzes fibrinogen as well as fibrin, but does not show any proteolytic activity for other blood proteins such as thrombin, human albumin, bovine albumin, human IgG, hemoglobin, or urokinase. This protease hydrolyzes both A alpha and B beta subunits of human fibrinogen with equal efficiency. The enzyme activity was strongly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. No inhibition was found with PMSF, E-64, pepstatin, and 2-mercaptoethanol. The activity of the purified enzyme was slightly increased by Mg2+, Zn2+, and Co2+, but the enzyme was totally inhibited by Hg2+. It has broad substrate specificity for synthetic peptides, and a pH optimum at 7, suggested that the purified enzyme was a neutral protease. It was thermally stable up to 60 degrees C and the maximum fibrinolytic activity was at 55 degrees C.  相似文献   

15.
A novel bacterial protease specifically hydrolyzing actin with the formation of a stable fragment with Mr of 36 kDa was obtained. This protease was shown to be synthesized at the stationary phase of bacterial culture growth. The actin hydrolysis by bacterial protease was inhibited by o-phenanthroline, EDTA and p-chloromercuribenzoate but not by N-ethyl-maleimide, phenylmethylsulfonylfluoride, Leu-peptin, pepstatin and other serine proteinase inhibitors. The protease was stable within the pH range of 4.5-8.5 and had an activity optimum at pH 7.0-8.0. The protease activity was maintained for 40 min at 45 degrees C and for 30 min at 50 degrees C; at 65 degrees C the enzyme was fully inactivated by 5 min heating. The protease preparations causing quantitative conversion of actin into a 36 kDa fragment did not hydrolyze casein, albumin, ovalbumin, lysozyme, DNAase I, RNAase, myosin, alpha-actinin, tropomyosin and troponin. It was assumed that the protease under consideration is a neutral metalloprotease specifically hydrolyzing actin.  相似文献   

16.
S Kubota  T Onaka  H Murofushi  N Ohsawa  F Takaku 《Biochemistry》1986,25(26):8396-8402
Porcine and bovine brain high Ca2+-requiring neutral proteases were purified to homogeneity by the same isolation procedures, and their properties were compared. A high degree of similarity existed between the two proteases. The purification procedures included ion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on phenyl-Sepharose CL-4B, second DEAE-cellulose chromatography, second phenyl-Sepharose CL-4B chromatography, and gel filtration on Ultrogel AcA 34. Both purified enzymes were composed of Mr 75,000 and 29,000 subunits, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both enzymes required 250 microM Ca2+ for half-maximal activity and 700 microM Ca2+ for maximal activity. Sr2+ and Ba2+, but not Mg2+ or Mn2+, also activated both enzymes but not as effectively as Ca2+. Both enzymes displayed maximum activity at pH 7.5-8.0. Leupeptin, antipain, and trans-epoxysuccinyl-L-leucylagmatine inhibited both enzymes. Neurofilament triplet proteins and microtubule-associated proteins were extensively hydrolyzed by both proteases, but tubulin and actin were not hydrolyzed. The amino acid compositions of the two proteases were very similar. Antisera against bovine brain protease cross-reacted with porcine brain protease when examined by immunoelectrotransfer blot techniques.  相似文献   

17.
Purification and characterization of human placental aminopeptidase A   总被引:3,自引:0,他引:3  
Human placental aminopeptidase A (AAP) was purified 3,900-fold from human placenta and characterized. The enzyme was solubilized from membrane fractions with Triton X-100, then subjected to trypsin digestion, zinc sulfate fractionation, chromatographies with DE-52, Sephacryl S-300, and hydroxylapatite, affinity chromatography with Bestatin-Sepharose 4B, and finally immunoaffinity chromatography with the antibody against microsomal leucine aminopeptidase (LAP). Aminopeptidase A was completely separated from leucine aminopeptidase by the immunoaffinity chromatography. The apparent relative molecular mass (Mr) of the enzyme was estimated to be 280,000 by gel filtration. The purified enzyme was most active at pH 7.1 with L-aspartyl-beta-naphthylamide (L-Asp-NA) as substrate; the Km value for this substrate was 4.0 mmol/l in the presence of Ca2+. Human placental aminopeptidase A was markedly activated by alkaline earth metals (Ca2+, Sr2+, Ba2+), but strongly inhibited by metal chelating agents such as EDTA and o-phenanthroline. The highest activity was observed with L-glutamyl-beta-naphthylamide, while only minimal hydrolysis was found with some neutral and basic amino acid beta-naphthylamides.  相似文献   

18.
M Abrami?  L Vitale 《FEBS letters》1989,253(1-2):79-82
A new Cl- -activated aminopeptidase was purified from the cytosol of human erythrocytes as a single chain protein of an approx. Mr of 70,000 and pI of 5.1. The enzyme hydrolysed 2-naphthylamides of aliphatic, aromatic and basic L-amino acids, with a preference for the alanyl residue. It also hydrolysed di-, tri-, and some hydrophobic tetrapeptides. The inhibitors were bestatin, amastatin, Co2+, Zn2+, Mn2+, 4-hydroxymercuribenzoate and 1,10-phenanthroline. The activity of the enzyme, inhibited by 4-hydroxymercuribenzoate, was partially restored by the addition of sulfhydryl compounds. The presence of 0.2 M Cl- (Br-,F-) caused a several-fold increase in the isolated aminopeptidase activity.  相似文献   

19.
Carboxypeptidase T, an extracellular carboxypeptidase from Thermoactinomyces sp. was isolated and purified by affinity chromatography on bacitracin adsorbents. The enzyme homogeneity was established by SDS electrophoresis (Mr = 38 000) and isoelectrofocusing in PAAG (pI 5.3). Carboxypeptidase T reveals a mixed specificity in comparison with pancreatic carboxypeptidases A and B and cleaves with nearly the same efficiency the peptide bonds formed by the C-terminal residues of basic and neutral hydrophobic amino acids. The enzyme is insensitive to serine and thiol proteinase inhibitors but is completely inhibited by EDTA and o-phenanthroline. The maximal enzyme activity is observed at pH 7-8. With an increase of temperature from 20 to 70 degrees C the enzyme activity is enhanced approximately 10-fold. In the presence of 1 mM Ca2+ the enzyme thermostability is also increased. In terms of some properties, e.g. substrate specificity carboxypeptidase T is similar to metallocarboxypeptidase secreted by Streptomyces griseus. The N-terminal sequence of carboxypeptidase T: Asp-Phe-Pro-Ser-Tyr-Asp-Ser-Gly- Tyr-His-Asn-Tyr-Asn-Glu-Met-Val-Asn-Lys-Ile-Asn-Thr-Val-Ala-Ser-Asn-Tyr- Pro-Asn - Ile-Val-Lys-Thr-Phe-Ser-Ile-Gly-Lys-Val-Tyr-Glu-Gly-Xaa-Gly-Leu- coincides by 21% with that of pancreatic carboxypeptidases A and B. Thus, it may be concluded that these enzymes originate from a common precursor.  相似文献   

20.
The present experiments were performed to identify calmodulin-binding proteins phosphorylated in response to insulin. Homogenates were prepared from 32Pi-labeled rat adipocytes. After centrifugation, the supernatants (+/- Ca2+) were applied to calmodulin-Sepharose columns. The bound proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and phosphoproteins were visualized by autoradiography. Several proteins bound to the affinity resin in the presence of Ca2+, two bound +/- Ca2+, but only one protein, Mr = 170,000 (denoted pp170), bound in the absence of Ca2+. Binding of pp170 was inhibited by adding calmodulin (micromolar) or Ca2+ (nanomolar) to extracts prior to affinity chromatography. Physiological concentrations of insulin rapidly and reversibly increased (by as much as 4-fold) 32P-labeled pp170. Phorbol 12-myristate 13-acetate (PMA) increased (up to 3-fold) phosphorylation of pp170; but 4 alpha-phorbol 12,13-didecanoate was without effect. Phosphorylation of pp170 in response to insulin and PMA occurred predominantly on serine residues; no phosphotyrosine was detected. Protein kinase C inhibitors attenuated PMA-stimulated phosphorylation of pp170, but had no effect on insulin-stimulated phosphorylation. Peptide mapping indicated that pp170 was phosphorylated on multiple sites and that insulin stimulated the phosphorylation of at least one site not phosphorylated in response to PMA. The results indicate that insulin and PMA stimulate the phosphorylation of pp170 via different pathways, the latter presumably via protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号