首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We explored T cell responses to the self class II MHC (I-Ag7) beta-chain-derived peptides in diabetic and prediabetic nonobese diabetic (NOD) mice. We found that one of these immunodominant epitopes of the beta-chain of I-Ag7 molecule, peptide 54-76, could regulate autoimmunity leading to diabetes in NOD mice. T cells from prediabetic young NOD mice do not respond to the peptide 54-76, but T cells from diabetic NOD mice proliferated in response to this peptide. T cells from older nondiabetic mice or mice protected from diabetes do not respond to this peptide, suggesting a role for peptide 54-76-specific T cells in pathogenesis of diabetes. We show that this peptide is naturally processed and presented by the NOD APCs to self T cells. However, the peptide-specific T cells generated after immunization of young mice regulate autoimmunity in NOD mice by blocking the diabetogenic cells in adoptive transfer experiments. The NOD mice immunized with this peptide are protected from both spontaneous and cyclophosphamide-induced insulin-dependent diabetes mellitus. Immunization of young NOD mice with this peptide elicited T cell proliferation and production of Th2-type cytokines. In addition, immunization with this peptide induced peptide-specific Abs of IgG1 isotype that recognized native I-Ag7 molecule on the cell surface and inhibited the T cell proliferative responses. These results suggest that I-Abetag7(54-76) peptide-reactive T cells are involved in the pathogenesis of diabetes. However, immunization with this peptide at young age induces regulatory cells and the peptide-specific Abs that can modulate autoimmunity in NOD mice and prevent spontaneous and induced diabetes.  相似文献   

2.
The 524--543 region of glutamic acid decarboxylase (GAD65), GAD65(524--543), is one of the first fragments of this islet Ag to induce proliferative T cell responses in the nonobese diabetic (NOD) mouse model of spontaneous autoimmune diabetes. Furthermore, NOD mice given tolerogenic doses of GAD65(524--543) are protected from spontaneous and cyclophosphamide-induced diabetes. In this study, we report that there are at least two I-A(g7)-restricted determinants present in the GAD65(524--543) sequence, each capable of recruiting unique T cell repertoires characterized by distinct TCR V beta gene use. CD4(+) T cells arise spontaneously in young NOD mice to an apparently dominant determinant found within the GAD65 peptide 530--543 (p530); however, T cells to the overlapping determinant 524-538 (p524) dominate the response only after immunization with GAD65(524--543). All p530-responsive T cells used the V beta 4 gene, whereas the V beta 12 gene is preferentially used to encode the TCR of p524-responsive T cell populations. T cell clones and hybridomas from both of these T cell groups were responsive to APC pulsed with GAD65(524--543) or whole rGAD65. p524-reactive cells appeared to be regulatory upon adoptive transfer into young NOD mice and could inhibit insulin-dependent diabetes mellitus development, although they were unable to produce IL-4, IL-10, or TGF beta upon antigenic challenge. Furthermore, we found that i.p. injection with p524/IFA was very effective in providing protection from cyclophosphamide-induced insulin-dependent diabetes mellitus. These data demonstrate that the regulatory T cells elicited by immunizing with GAD65(524--543) are unique and distinct from those that arise from spontaneous endogenous priming, and that T cells to this limited region of GAD65 may be either regulatory or pathogenic.  相似文献   

3.
Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) has been identified as a novel CD8(+) T cell-specific autoantigen in NOD mice. This study was undertaken to identify MHC class II-specific CD4(+) T cell epitopes of IGRP. Peptides named P1, P2, P3, P4, P5, P6, and P7 were synthesized by aligning the IGRP protein amino acid sequence with peptide-binding motifs of the NOD MHC class II (I-A(g7)) molecule. Peptides P1, P2, P3, and P7 were immunogenic and induced both spontaneous and primed responses. IGRP peptides P1-, P2-, P3-, and P7-induced responses were inhibited by the addition of anti-MHC class II (I-A(g7)) Ab, confirming that the response is indeed I-A(g7) restricted. Experiments using purified CD4(+) and CD8(+) T cells from IGRP peptide-primed mice also showed a predominant CD4(+) T cell response with no significant activation of CD8(+) T cells. T cells from P1-, P3-, and P7-primed mice secreted both IFN-gamma and IL-10 cytokines, whereas P2-primed cells secreted only IFN-gamma. Peptides P3 and P7 prevented the development of spontaneous diabetes and delayed adoptive transfer of diabetes. Peptides P1 and P2 delayed the onset of diabetes in both these models. In summary, we have identified two I-A(g7)-restricted CD4(+) T cell epitopes of IGRP that can modulate and prevent the development of diabetes in NOD mice. These results provide the first evidence on the role of IGRP-specific, MHC class II-restricted CD4(+) T cells in disease protection and may help in the development of novel therapies for type 1 diabetes.  相似文献   

4.
The insulinoma-associated protein 2 (IA-2) is a phosphatase-like autoantigen inducing T and B cell responses associated with human insulin-dependent diabetes mellitus (IDDM). We now report that T cell responses to IA-2 can also be detected in the nonobese diabetic (NOD) mouse, a model of human IDDM. Cytokine secretion in response to purified mouse rIA-2, characterized by high IFN-gamma and relatively low IL-10 and IL-6 secretion, was elicited in spleen cells from unprimed NOD mice. Conversely, no response to IA-2 was induced in spleen cells from BALB/c, C57BL/6, or Biozzi AB/H mice that express, like NOD, the I-A(g7) class II molecule, but are not susceptible to spontaneous IDDM. The IA-2-induced IFN-gamma response in NOD spleen cells could already be detected at 3 wk and peaked at 8 wk of age, whereas the IL-10 secretion was maximal at 4 wk of age and then waned. IA-2-dependent IFN-gamma secretion was induced in CD4(+) cells from spleen as well as pancreatic and mesenteric lymph nodes. It required Ag presentation by I-A(g7) molecules and engagement of the CD4 coreceptor. Interestingly, cytokines were produced in the absence of cell proliferation and IL-2 secretion. The biological relevance of the response to IA-2 is indicated by the enhanced IDDM following a single injection of the recombinant protein emulsified in IFA into 18-day-old NOD mice. In addition, IFN-gamma production in response to IA-2 and IDDM acceleration could be induced by IL-12 administration to 12-day-old NOD mice. These results identify IA-2 as an early T cell-inducing autoantigen in the NOD mouse and indicate a role for the IA-2-induced Th1 cell response in IDDM pathogenesis.  相似文献   

5.
The MHC determines susceptibility and resistance to type 1 diabetes in humans and nonobese diabetic (NOD) mice. To investigate how a disease-associated MHC molecule shapes the T cell repertoire in NOD mice, we generated a series of tetramers from I-A(g7)/class II-associated invariant chain peptide precursors by peptide exchange. No CD4 T cell populations could be identified for two glutamic acid decarboxylase 65 peptides, but tetramers with a peptide mimetic recognized by the BDC-2.5 and other islet-specific T cell clones labeled a distinct population in the thymus of young NOD mice. Tetramer-positive cells were identified in the immature CD4(+)CD8(low) population that arises during positive selection, and in larger numbers in the more mature CD4(+)CD8(-) population. Tetramer labeling was specific based on the use of multiple control tetramers, including one with a single amino acid analog peptide in which a critical TCR contact residue was substituted. The T cell population was already present in the thymus of 2-wk-old NOD mice before the typical onset of insulitis and was detected in B10 mice congenic for the NOD MHC locus, but not B10 control mice. These results demonstrate that a T cell population can expand in the thymus of NOD mice to levels that are at least two to three orders of magnitude higher than estimated for a given specificity in the naive T cell pool. Based on these data, we propose a model in which I-A(g7) confers susceptibility to type 1 diabetes by biasing positive selection in the thymus and later presenting peptides from islet autoantigens to such T cells in the periphery.  相似文献   

6.
Type 1 diabetes is an autoimmune disorder caused by autoreactive T cells that mediate destruction of insulin-producing beta cells of the pancreas. Studies have shown that T cell tolerance can be restored by inducing a partial or altered signal through the TCR. To investigate the potential of bivalent peptide-MHC class II/Ig fusion proteins as therapeutics to restore Ag-specific tolerance, we have developed soluble peptide I-A(g7) dimers for use in the nonobese diabetic mouse model of diabetes. I-A(g7) dimers with a linked peptide specific for islet-reactive BDC2.5 TCR transgenic CD4(+) T cells were shown to specifically bind BDC2.5 T cells as well as a small population of Ag-specific T cells in nonobese diabetic mice. In vivo treatment with BDC2.5 peptide I-A(g7) dimers protected mice from diabetes mediated by the adoptive transfer of diabetogenic BDC2.5 CD4(+) T cells. The dimer therapy resulted in the activation and increased cell death of transferred BDC2.5 CD4(+) T cells. Surviving cells were hypoproliferative to challenge by Ag and produced increased levels of IL-10 and decreased levels of IFN-gamma compared with cells from control I-A(g7) dimer-treated mice. Anti-IL-10R therapy reversed the tolerogenic effects of the dimer. Thus, peptide I-A(g7) dimers induce tolerance of BDC2.5 TCR T cells through a combination of the induction of clonal anergy and anti-inflammatory cytokines.  相似文献   

7.
Several studies have provided indirect evidence in support of a role for beta cell-specific Th2 cells in regulating insulin-dependent diabetes (IDDM). Whether a homogeneous population of Th2 cells having a defined beta cell Ag specificity can prevent or suppress autoimmune diabetes is still unclear. In fact, recent studies have demonstrated that beta cell-specific Th2 cell clones can induce IDDM. In this study we have established Th cell clones specific for glutamic acid decarboxylase 65 (GAD65), a known beta cell autoantigen, from young unimmunized nonobese diabetic (NOD) mice. Adoptive transfer of a GAD65-specific Th2 cell clone (characterized by the secretion of IL-4, IL-5, and IL-10, but not IFN-gamma or TGF-beta) into 2- or 12-wk-old NOD female recipients prevented the progression of insulitis and subsequent development of overt IDDM. This prevention was marked by the establishment of a Th2-like cytokine profile in response to a panel of beta cell autoantigens in cultures established from the spleen and pancreatic lymph nodes of recipient mice. The immunoregulatory function of a given Th cell clone was dependent on the relative levels of IFN-gamma vs IL-4 and IL-10 secreted. These results provide direct evidence that beta cell-specific Th2 cells can indeed prevent and suppress autoimmune diabetes in NOD mice.  相似文献   

8.
Mechanistic and therapeutic insights in autoimmune diabetes would benefit from a more complete identification of relevant autoantigens. BDC2.5 TCR transgenic NOD mice express transgenes for TCR Vα1 and Vβ4 chains from the highly diabetogenic BDC2.5 CD4(+) T cell clone, which recognizes pancreatic β cell membrane Ags presented by NOD I-A(g7) MHC class II molecules. The antigenic epitope of BDC2.5 TCR is absent in β cells that do not express chromogranin A (ChgA) protein. However, characterization of the BDC2.5 epitope in ChgA has given inconclusive results. We have now identified a ChgA29-42 peptide within vasostatin-1, an N-terminal natural derivative of ChgA as the BDC2.5 TCR epitope. Having the necessary motif for binding to I-A(g7), it activates BDC2.5 T cells and induces an IFN-γ response. More importantly, adoptive transfer of naive BDC2.5 splenocytes activated with ChgA29-42 peptide transferred diabetes into NOD/SCID mice.  相似文献   

9.
Type 1 diabetes (T1D) in non-obese diabetic (NOD) mice may be favored by immune dysregulation leading to the hyporesponsiveness of regulatory T cells and activation of effector T-helper type 1 (Th1) cells. The immunoregulatory activity of natural killer T (NKT) cells is well documented, and both interleukin (IL)-4 and IL-10 secreted by NKT cells have important roles in mediating this activity. NKT cells are less frequent and display deficient IL-4 responses in both NOD mice and individuals at risk for T1D (ref. 8), and this deficiency may lead to T1D (refs. 1,6-9). Thus, given that NKT cells respond to the alpha-galactosylceramide (alpha-GalCer) glycolipid in a CD1d-restricted manner by secretion of Th2 cytokines, we reasoned that activation of NKT cells by alpha-GalCer might prevent the onset and/or recurrence of T1D. Here we show that alpha-GalCer treatment, even when initiated after the onset of insulitis, protects female NOD mice from T1D and prolongs the survival of pancreatic islets transplanted into newly diabetic NOD mice. In addition, when administered after the onset of insulitis, alpha-GalCer and IL-7 displayed synergistic effects, possibly via the ability of IL-7 to render NKT cells fully responsive to alpha-GalCer. Protection from T1D by alpha-GalCer was associated with the suppression of both T- and B-cell autoimmunity to islet beta cells and with a polarized Th2-like response in spleen and pancreas of these mice. These findings raise the possibility that alpha-GalCer treatment might be used therapeutically to prevent the onset and recurrence of human T1D.  相似文献   

10.
BALB/c mice that express IL-10 as a transgene in their pancreatic beta cells (Ins-IL-10 mice) do not develop diabetes, even after crossing to nonobese diabetic (NOD) mice ((Ins-IL-10 x NOD)F(1) mice). However, backcross of F(1) mice to NOD mice (NOD.Ins-IL-10 mice) results in N2 and N3 generations that develop accelerated diabetes. In this study, we found that NOD.Ins-IL-10 mice that expressed BALB/c-derived MHC molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) were protected from diabetes. This protection associated with peri-islet infiltration and preserved beta cell function. Moreover, expression of I-A(d) and I-E(d) MHC class II molecules of BALB/c origin was not responsible for protection, but NOD.Ins-IL-10 mice that expressed BALB/c MHC class I D(d) molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) did not develop diabetes. To directly test the possibility of a protective role of H-2D(d) in the development of accelerated diabetes, we generated transgenic mice expressing D(d) under the control of the MHC class I promoter. We found that double transgenic NOD.Ins-IL-10-D(d) mice developed accelerated diabetes in a fashion similar to NOD.Ins-IL-10 mice that were D(d) negative. Microsatellite analysis of H-2D(d)-linked loci confirmed association between BALB/c-derived alleles and protection of NOD.Ins-IL-10(H-2(g7/d)) mice. These results suggest a control of H-2D(d)-linked gene(s) on IL-10-mediated acceleration of autoimmune diabetes and dominant protection of the D(d) region in NOD.Ins-IL-10 mice.  相似文献   

11.
Nonobese diabetic (NOD) and NOD-DRalpha transgenic (tg) mice, expressing Aalpha(d):Abeta(g7) and Aalpha(d):Abeta(g7) plus DRalpha:Ebeta(g7) class II molecules, respectively, both develop insulin-dependent diabetes mellitus (IDDM), whereas NOD-Ealpha tg mice expressing Aalpha(d):Abeta(g7) plus Ealpha:Ebeta(g7) are protected. We show that IL-12 administration induces rapid IDDM onset in NOD-DRalpha but fails to provoke insulitis and diabetes in NOD-Ealpha tg mice. Nevertheless, T cells from IL-12-treated NOD-Ealpha tg mice secrete IFN-gamma and transfer IDDM to NOD-SCID and NOD-Ealpha-SCID recipients, demonstrating the presence of peripheral diabetogenic Th1 cells in the protected mice. Surprisingly, regulatory cells were undetectable. Moreover, Ealpha:Ebeta(g7) could substitute for DRalpha:Ebeta(g7) in Ag presentation, arguing against mechanisms of protection involving capture of diabetogenic I-A(g7)-restricted epitopes by Ealpha:Ebeta(g7)molecules. Interestingly, the expression of naturally processed epitopes derived from DRalpha- and Ealpha-chains bound to I-A(g7) is different in the two strains of tg mice, and the difference is enhanced by IL-12 administration. I-A(g7) molecules from both NOD-DRalpha and NOD-Ealpha tg mice present the conserved DRalpha/Ealpha 52-68 sequence, at high and low levels, respectively. In addition, only IDDM-resistant NOD-Ealpha tg mice possess APCs bearing Ealpha65-77/I-A(g7) complexes, which tolerize the specific T cells. This is associated with the selective inhibition of the response to insulinoma-associated protein 2 (IA-2), an autoantigen in IDDM. Our results support protective mechanisms based on I-A(g7) blockade by peptides unique to the Ealpha-chain, such as Ealpha65-77 and/or tolerance of diabetogenic T cells cross-reactive with Ealpha-peptide/I-A(g7) complexes.  相似文献   

12.
On the basis of on the marked inhibitory activity of the vitamin D receptor agonist Elocalcitol on basal and growth factor-induced proliferation of human prostate cells and on its potent anti-inflammatory properties, we have tested its capacity to treat experimental autoimmune prostatitis (EAP) induced by injection of prostate homogenate-CFA in nonobese diabetic (NOD) mice. Administration of Elocalcitol, at normocalcemic doses, for 2 wk in already established EAP significantly inhibits the intraprostatic cell infiltrate, leading to a profound reduction in the number of CD4(+) and CD8(+) T cells, B cells, macrophages, dendritic cells, and I-A(g7)-positive cells. Immunohistological analysis demonstrates reduced cell proliferation and increased apoptosis of resident and infiltrating cells. Significantly decreased production of the proinflammatory cytokines IFN-gamma and IL-17 is observed in prostate-draining lymph node T cells from Elocalcitol-treated NOD mice stimulated by TCR ligation. In addition, Elocalcitol treatment reduces IFN-gamma production by prostate-infiltrating CD4(+) T cells and draining lymph node T cells specific for an immunodominant peptide naturally processed from prostate steroid-binding protein, a prostate-specific autoantigen. Finally, CD4(+) splenic T cells from Elocalcitol-treated NOD mice show decreased ability, upon adoptive transfer into NOD.SCID recipients, to induce autoimmune prostatitis, paralleled by a reduced capacity to produce IFN-gamma in response to prostate steroid-binding protein. The results indicate that Elocalcitol is able to interfere with key pathogenic events in already established EAP in the NOD mouse. These data show a novel indication for vitamin D receptor agonists and indicate that treatment with Elocalcitol may inhibit the intraprostatic inflammatory response in chronic prostatitis/chronic pelvic pain syndrome patients.  相似文献   

13.
Class II major histocompatibility molecules are the primary susceptibility locus for many autoimmune disorders, including type 1 diabetes. Human DQ8 and I-A(g7), in the NOD mouse model of spontaneous autoimmune diabetes, confers diabetes risk by modulating presentation of specific islet peptides in the thymus and periphery. We used an in silico molecular docking program to screen a large "druglike" chemical library to define small molecules capable of occupying specific structural pockets along the I-A(g7) binding groove, with the objective of influencing presentation to T cells of the autoantigen insulin B chain peptide consisting of amino acids 9-23. In this study we show, using both murine and human cells, that small molecules can enhance or inhibit specific TCR signaling in the presence of cognate target peptides, based upon the structural pocket targeted. The influence of compounds on the TCR response was pocket dependent, with pocket 1 and 6 compounds inhibiting responses and molecules directed at pocket 9 enhancing responses to peptide. At nanomolar concentrations, the inhibitory molecules block the insulin B chain peptide consisting of amino acids 9-23, endogenous insulin, and islet-stimulated T cell responses. Glyphosine, a pocket 9 compound, enhances insulin peptide presentation to T cells at concentrations as low as 10 nM, upregulates IL-10 secretion, and prevents diabetes in NOD mice. These studies present a novel method for identifying small molecules capable of both stimulating and inhibiting T cell responses, with potentially therapeutic applications.  相似文献   

14.
15.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

16.
The diversity of Ags targeted by T cells in autoimmune diabetes is unknown. In this study, we identify and characterize a limited number of naturally processed peptides from pancreatic islet beta-cells selected by diabetogenic I-A(g7) molecules of NOD mice. We used insulinomas transfected with the CIITA transactivator, which resulted in their expression of class II histocompatibility molecules and activation of diabetogenic CD4 T cells. Peptides bound to I-A(g7) were isolated and examined by mass spectrometry: some peptides derived from proteins present in secretory granules of endocrine cells, and a number were shared with cells of neuronal lineage. All proteins to which peptides were identified were expressed in beta cells from normal islets. Peptides bound to I-A(g7) molecules contained the favorable binding motif characterized by acidic amino acids at the P9 position. The draining pancreatic lymph nodes of prediabetic NOD mice contained CD4 T cells that recognized three different natural peptides. Furthermore, four different peptides elicited CD4 T cells, substantiating the presence of such self-reactive T cells. The overall strategy of identifying natural peptides from islet beta-cells opens up new avenues to evaluate the repertoire of self-reactive T cells and its role in onset of diabetes.  相似文献   

17.
Diabetes in nonobese diabetic (NOD) mice results from the activation of I-A(g7)-restricted, islet-reactive T cells. This study delineates several characteristics of NOD CD4 T cell activation, which, independent of I-A(g7), are likely to promote a dysregulated state of peripheral T cell tolerance. NOD CD4 T cell activation was found to be resistant to antigenic stimulation via the TCR complex, using the progression of cell division as a measure. The extent of NOD CD4 T cell division was highly sensitive to changes in Ag ligand density. Moreover, even upon maximal TCR complex-mediated stimulation, NOD CD4 T cell division prematurely terminated. Maximally stimulated NOD CD4 T cells failed to achieve the threshold number of division cycles required for optimal susceptibility to activation-induced death, a critical mechanism for the regulation of peripheral T cell tolerance. Importantly, these aberrant activation characteristics were not T cell-intrinsic but resulted from reliance on B cell costimulatory function in NOD mice. Costimulation delivered by nonautoimmune strain APCs normalized NOD CD4 T cell division and the extent of activation-induced death. Thus, by disrupting the progression of CD4 T cell division, polarization of APC costimulatory function to the B cell compartment could allow the persistence and activation of diabetogenic cells in NOD mice.  相似文献   

18.
We have previously shown that the development of type 1 diabetes (T1D) can be prevented in nonobese diabetic (NOD) mice by reconstitution with autologous hemopoietic stem cells retrovirally transduced with viruses encoding MHC class II I-A beta-chain molecules associated with protection from the disease. In this study we examined whether a blockade of the programmed death-1 (PD-1)-programmed death ligand-1 (PD-L1) pathway, a major pathway known to control diabetes occurrence, could precipitate T1D in young NOD mice following reconstitution with autologous bone marrow retrovirally transduced with viruses encoding protective MHC class II I-A beta-chain molecules. In addition, we examined whether the expression of protective MHC class II alleles in hemopoietic cells could be used to prevent the recurrence of diabetes in mice with pre-existing disease following islet transplantation. Protection from the occurrence of T1D diabetes in young NOD mice by the expression of protective MHC class II I-A beta-chain molecules in bone marrow-derived hemopoietic cells was resistant to induction by PD-1-PD-L1 blockade. Moreover, reconstitution of NOD mice with pre-existing T1D autologous hemopoietic stem cells transduced with viruses encoding protective MHC class II I-A beta-chains allowed for the successful transplantation of syngeneic islets, resulting in the long-term reversal of T1D. Reversal of diabetes was resistant to induction by PD-1-PDL-1 blockade and depletion of CD25(+) T cells. These data suggest that expression of protective MHC class II alleles in bone marrow-derived cells establishes robust self-tolerance to islet autoantigens and is sufficient to prevent the recurrence of autoimmune diabetes following islet transplantation.  相似文献   

19.
20.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号