首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of an osteotropic hormone (referred to as gastrocalcin) in the ECL cells of the gastric mucosa has been suggested. Both gastrin and an extract of the oxyntic mucosa lower blood Ca(2+) and stimulate Ca(2+) uptake into bone. The ECL cells are known to operate under gastrin control and, conceivably, gastrin lowers blood Ca(2+) indirectly by releasing the hypothetical ECL cell hormone. We have shown earlier that extracts of isolated ECL cells or of the granule/vesicle fraction of the oxyntic mucosa evoke a typical Ca(2+)-mediated second messenger response in osteoblastic cells. In the present study, we characterize this response further. An increase in intracellular inositol 1,4,5-trisphosphate (IP(3)) concentration was observed after treatment of UMR-106.01 osteoblast-like cells with extracts of ECL cells or granule/vesicle-enriched fractions from oxyntic mucosa. Intracellular cyclic adenosine monophosphate (cAMP) concentrations were not affected. Inhibition of phospholipase C (PLC) by U-73122 abolished the increase in [Ca(2+)](i). Preincubation of UMR-106.01 cells with pertussis toxin, which blocks many G-proteins, did not prevent the increases in IP(3) and [Ca(2+)](i). It was also found that the novel peptide hormone ghrelin, produced in the A-like cells of the oxyntic mucosa, did not evoke any Ca(2+) signal in osteoblastic cells. The results indicate that the extracts mediate their effects through a pertussis toxin-insensitive mechanism, and that binding to a receptor leads to activation of PLC and production of IP(3) resulting in increased [Ca(2+)](i). The putative osteotropic hormone is distinct from ghrelin.  相似文献   

2.
The oxyntic mucosa is rich in ECL cells. They secrete histamine and chromogranin A-derived peptides, such as pancreastatin, in response to gastrin and pituitary adenylate cyclase-activating peptide (PACAP). Secretion is initiated by Ca2+ entry. While gastrin stimulates secretion by opening L-type and N-type Ca2+ channels, PACAP stimulates secretion by activating L-type and receptor-operated Ca2+ channels. Somatostatin, galanin and prostaglandin E2 (PGE2) inhibit gastrin- and PACAP-stimulated secretion from the ECL cells. In the present study, somatostatin and the PGE2 congener misoprostol inhibited gastrin- and PACAP-stimulated secretion 100%, while galanin inhibited at most 60-65%. Bay K 8644, a specific activator of L-type Ca2+ channels, stimulated ECL-cell secretion, an effect that was inhibited equally effectively by somatostatin, misoprostol and galanin (75-80% inhibition). Pretreatment with pertussis toxin, that inactivates inhibitory G-proteins, prevented all three agents from inhibiting stimulated secretion (regardless of the stimulus). Pretreatment with nifedipine (10 microM), an L-type Ca2+ channel blocker, reduced PACAP-evoked pancreastatin secretion by 50-60%, gastrin-evoked secretion by approximately 80% and abolished the response to Bay K 8644. The nifedipine-resistant response to PACAP was abolished by somatostatin and misoprostol but not by galanin. Gastrin and PACAP raised the intracellular Ca2+ concentration in a biphasic manner, believed to reflect mobilization of internal Ca2+ followed by Ca2+ entry. Somatostatin and misoprostol blocked Ca2+ entry (and histamine and pancreastatin secretion) but not mobilization of internal Ca2+. The present observations on isolated ECL cells suggest that Ca2+ entry rather than mobilization of internal Ca2+ triggers exocytosis, that gastrin and PACAP activate different (but over-lapping) Ca2+ channels, that somatostatin, misoprostol and galanin interact with inhibitory G-proteins to block Ca2+ entry via L-type Ca2+ channels, and that somatostatin and misoprostol (but not galanin) in addition block N-type and/or receptor-operated Ca2+ channels.  相似文献   

3.
4.
5.
The oxyntic mucosa of the rat stomach is rich in ECL cells which produce and secrete histamine in response to gastrin. Histamine and the histamine-forming enzyme histidine decarboxylase (HDC) have been claimed to occur also in the gastrin-secreting G cells in the antrum. In the present study, we used a panel of five HDC antisera and one histamine antiserum to investigate whether histamine and HDC are exclusive to the ECL cells. By immunocytochemistry, we could show that the ECL cells were stained with the histamine antiserum and all five HDC antisera. The G cells, however, were not stained with the histamine antiserum, but with three of the five HDC antisera. Thus, histamine and HDC coexist in the ECL cells (oxyntic mucosa) but not in G cells (antral mucosa). Western blot analysis revealed a typical pattern of HDC-immunoreactive bands (74, 63 and 54 kDa) in oxyntic mucosa extracts with all five antisera. In antral extracts, immunoreactive bands were detected with three of the five HDC antisera (same as above); the pattern of immunoreactivity differed from that in oxyntic mucosa. Food intake of fasted rats or treatment with the proton pump inhibitor omeprazole raised the HDC activity and the HDC protein content of the oxyntic mucosa but not of the antral mucosa; the HDC activity in the antrum was barely detectable. We suggest that the HDC-like immunoreactivity in the antrum represents a cross-reaction with non-HDC proteins and conclude that histamine and HDC are hallmark features of ECL cells but not of G cells.  相似文献   

6.
Histamine-producing ECL cells and ghrelin-producing A-like cells are endocrine/paracrine cell populations in the acid-producing part of the rat stomach. While the A-like cells operate independently of gastrin, the ECL cells respond to gastrin with mobilization of histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. Gastrin is often assumed to be the driving force behind the postnatal development of the gastric mucosa in general and the ECL cells in particular. We tested this assumption by examining the oxyntic mucosa (with ECL cells and A-like cells) in developing rats under the influence of YF476, a cholecystokinin-2 (CCK(2)) receptor antagonist. The drug was administered by weekly subcutaneous injections starting at birth. The body weight gain was not affected. Weaning occurred at days 15-22 in both YF476-treated and age-matched control rats. Circulating gastrin was low at birth and reached adult levels 2 weeks after birth. During and after weaning (but not before), YF476 greatly raised the serum gastrin concentration (because of abolished acid feedback inhibition of gastrin release). The weight of the stomach was unaffected by YF476 during the first 2-3 weeks after birth. From 4 to 5 weeks of age, the weight and thickness of the gastric mucosa were lower in YF476-treated rats than in controls. Pancreastatin-immunoreactive cells (i.e. all endocrine cells in the stomach) and ghrelin-immunoreactive cells (A-like cells) were few at birth and increased gradually in number until 6-8 weeks of age (control rats). At first, YF476 did not affect the development of the pancreastatin-immunoreactive cells, but a few weeks after weaning, the cells were fewer in the YF476 rats. The ECL-cell parameters (oxyntic mucosal histamine and pancreastatin concentrations, the histidine decarboxylase (HDC) activity, the HDC mRNA levels and serum pancreastatin concentration) increased slowly until weaning in both YF476-treated and control rats. From then on, there was a further increase in the ECL-cell parameters in control rats but not in YF476 rats. The postnatal development of the ghrelin cells (i.e. the A-like cells) and of the A-like cell parameters (the oxyntic mucosal ghrelin concentration and the serum ghrelin concentrations) was not affected by YF476 at any point.We conclude that gastrin affects neither the oxyntic mucosa nor the endocrine cells before weaning. After weaning, CCK(2) receptor blockade is associated with a somewhat impaired development of the oxyntic mucosa and the ECL cells. While gastrin stimulation is of crucial importance for the onset of acid secretion during weaning and for the activation of ECL-cell histamine formation and secretion, the mucosal and ECL-cell growth at this stage is only partly gastrin-dependent. In contrast, the development of the A-like cells is independent of gastrin at all stages.  相似文献   

7.
Ghrelin is a 28 a.a. gastric peptide, recently identified as a natural ligand of the growth hormone secretagogue receptor (orphan receptor distinct from the receptor for growth hormone releasing hormone). In the present study, radioimmunoassay demonstrated ghrelin-like material in the rat oxyntic mucosa with moderate amounts also in antrum and duodenum. Small amounts were found in the distal intestines and pancreas. Northern blot analysis revealed abundant ghrelin mRNA in the oxyntic mucosa. Immunocytochemistry demonstrated ghrelin-immunoreactivity in endocrine-like cells in the oxyntic mucosa. Such cells occurred in low numbers also in the antrum and duodenum. The rat oxyntic mucosa is rich in endocrine (chromogranin A/pancreastatin-immunoreactive) cells, such as the histamine-rich ECL cells (65-75% of the endocrine cells), the A-like cells (20-25%) and the D cells (somatostatin cells) (10%). The ghrelin-immunoreactive (IR) cells contained pancreastatin but differed from ECL cells and D cells by being devoid of histamine-forming enzyme (ECL cell constituent) and somatostatin (D cell constituent). Hence, ghrelin seems to occur in the A-like cells. The ghrelin-IR cells in the antrum were distinct from the gastrin cells, the serotonin-containing enterochromaffin cells and the D cells. Conceivably, ghrelin cells in the antrum and distally in the intestines also belong to the A-like cell population. The concentration of ghrelin in the circulation was lowered by about 80% following the surgical removal of the acid-producing part of the stomach in line with the view that the oxyntic mucosa is the major source of ghrelin. The serum ghrelin concentration was higher in fasted rats than in fed rats; it was reduced upon re-feeding and seemed unaffected by 1-week treatment with the proton pump inhibitor omeprazole, resulting in elevated serum gastrin concentration. Infusion of gastrin-17 for 2 days failed to raise the serum ghrelin concentration. Omeprazole treatment for 10 weeks raised the level of HDC mRNA but not that of ghrelin mRNA or somatostatin mRNA in the oxyntic mucosa. Hence, unlike the ECL cells, ghrelin-containing A-like cells do not seem to operate under gastrin control.  相似文献   

8.
Cell-attached patches of membrane of osteoblast-like cells UMR-106.01 respond to bath application of parathyroid hormone (PTH) with an increase in the average activity, as well as the single channel conductance, of a stretch-activated non-selective cation channel. Correlations with whole cell membrane potential and conductance changes are considered.  相似文献   

9.
Gastrin is one of the main factors controlling enterochromaffin-like (ECL) cell endocrine function and growth. Long-standing hypergastrinemia may give rise to ECL cell carcinoids in the gastric corpus in man and in experimental models. We have analysed the expression and function of CCK-B/gastrin receptors in normal ECL cells and in ECL cell tumours (gastric carcinoids) of the African rodent Mastomys natalensis. Hypergastrinemia induced by short-term (5 days) histamine2-receptor blockade (loxtidine) resulted in increased histidine decarboxylase (HDC) mRNA expression in the gastric oxyntic mucosa. This increase was significantly and dose-dependently reversed by selective CCK-B/gastrin receptor blockade (YM022). Long-term (12 months) hypergastrinemia, induced by histamine2-receptor blockade, gave rise to ECL cell carcinoids in the gastric oxyntic mucosa. CCK-B/gastrin receptor mRNA was only slightly elevated while HDC mRNA expression was eight-fold elevated in ECL cell carcinoids and was not influenced by CCK-B/gastrin receptor blockade. Thus CCK-B/gastrin receptor blockade of hypergastrinemic animals reduces the HDC mRNA expression in normal mucosa but not in ECL cell carcinoids. These results demonstrate that HDC mRNA expression in neoplastic ECL cells is not controlled by CCK-B/gastrin receptors.  相似文献   

10.
11.
The enterochromaffin-like (ECL) cells represent the predominant endocrine cell population in the acid-producing part of the stomach of both experimental animals and man. These cells actively produce and store histamine in addition to an anticipated but as yet unidentified peptide hormone and are under the control of gastrin. An acute gastrin stimulus causes exocytosis of the cytoplasmic granules/vesicles (and release of histamine and activation of the histamine-forming enzyme, histidine decarboxylase), while a more sustained gastrin stimulus causes first hypertrophy and then hyperplasia of the ECL cells in the rat (at most, a fivefold increase in the cell number). These effects can be demonstrated following infusion of gastrin or following an increase in the concentration of circulating gastrin of endogenous origin. The growth of the ECL cells reflects an accelerated self-replication rate. As studied in the rat, the self-replication rate is accelerated quite soon after induction of hypergastrinemia (blockade of acid secretion), the rate is maximally elevated within two weeks and then declines to control values at ten and 20 weeks despite the sustained hypergastrinemia. Lifelong hypergastrinemia in rats is associated not only with ECL-cell hyperplasia but also with an increased incidence of ECL-cell carcinoids. Recently, we could show that alpha-fluoromethylhistidine, which is a suicide inhibitor of histidine decarboxylase, effectively depletes the ECL cells of histamine and that the histamine-depleted ECL cells respond to gastrin with hyperplasia in a manner identical to normal ECL cells. Other factors beside gastrin seem to participate in the control of ECL-cell function and proliferation. Although exogenous somatostatin is known to suppress the activity of the ECL cells, we have failed to obtain evidence that the somatostatin cells in the oxyntic mucosa play a role in the physiological control of the ECL cells. The vagus, however, is important for the ability of the ECL cells to respond to gastrin. This conclusion is based on the observation that vagal denervation suppresses the hyperplastic response of the ECL cells to gastrin. Porta-cava shunting, on the other hand, greatly enhances the responsiveness of the ECL cells to gastrin. The mechanism behind this effect is unknown.  相似文献   

12.
Gastrin lowers blood Ca2+ in the rat. Recently, it was suggested that gastrin causes hypocalcemia by releasing gastrocalcin, a hypothetical peptide hormone thought to reside in the acid-producing part of the stomach. The results of the present study suggest that not only exogenous gastrin but also gastrin of endogenous origin lowers blood Ca2+. Food intake in fasted intact rats produced a transient drop in blood Ca2+, probably induced by the postprandial rise in serum gastrin. Food intake in fasted gastrectomized or fundectomized (acid-producing part extirpated) rats failed to induce any lowering of the blood Ca2+, supporting the view that the gastrin-evoked hypocalcemia is dependent upon a factor in the oxyntic mucosa. Also, the increase in serum gastrin concentration following intraperitoneal injection of the histamine H2-receptor antagonist ranitidine was associated with a drop in blood Ca2+ and also the ranitidine-evoked hypocalcemia could be prevented by gastrectomy. We suggest that endogenous gastrin evokes hypocalcemia by the same mechanism as exogenous gastrin, i.e., by mobilization of gastrocalcin from the acid-producing part of the stomach.  相似文献   

13.
The regulation of histamine release from oxyntic mucosa is complex because of two potential sources of histamine: mast cells and enterochromaffin-like (ECL) cells. A gastrin-responsive histamine pool was identified in the rat oxyntic mucosa two decades ago, but these ECL cells from the rat have not yet been isolated or characterized in vitro. In vivo studies in canine and human mucosa have been more difficult because of the high content of histamine in mast cells. Using enzyme-dispersed canine oxyntic mucosal cells, we have studied regulation of histamine release from a mast cell-depleted fraction prepared by sequential elutriation and density gradient. Histamine-like immunoreactivity was demonstrated, using peroxidase-anti-peroxidase immunohistochemistry. After short-term culture, histamine was released in response to gastrin, cholecystokinin, carbachol, and forskolin. Somatostatin potently and effectively inhibited the response to gastrin. The cultures used for these studies also contained somatostatin cells, and, furthermore, the response to gastrin was enhanced by incubation with monoclonal antibodies to somatostatin. The latter findings suggested that somatostatin was acting in these cultures by a paracrine route. This pattern contrasts with that obtained in previous studies of canine oxyntic mucosal mast cells.  相似文献   

14.
The enterochromaffin-like (ECL) cells of the oxyntic mucosa (fundus) of the stomach produce, store and secrete histamine, chromogranin A-derived peptides such as pancreastatin, and an unanticipated but as yet unidentified peptide hormone. The cells are stimulated by gastrin and pituitary adenylate cyclase activating peptide and suppressed by somatostatin and galanin. Choline esters and histamine seem to be without effect on ECL cell secretion. The existence of a gastrin-ECL cell axis not only explains how gastrin stimulates acid secretion but also may help to explore the functional significance of the ECL cells with respect to the nature and bioactivity of its peptide hormone. From the results of studies of gastrectomized/fundectomized and gastrin-treated rats, it has been speculated that the anticipated ECL-cell peptide hormone acts on bone metabolism.  相似文献   

15.
ECL cells in the oxyntic mucosa of stomach control gastric acid secretion by mobilizing histamine in response to gastrin. They respond to gastrin also with hypertrophy and hyperplasia. ECL cells exhibit functional impairment upon long-term gastrin stimulation. The impairment is manifested in a gradual decline of the activity of the histamine-forming enzyme per individual ECL cell and in a failure of gastrin to mobilize histamine. The mechanism behind this impairment is unknown. In the present study, rats were treated with the proton pump inhibitor pantoprazole for 45 days to induce sustained hypergastrinemia. The ECL cells were isolated from normogastrinemic and hypergastrinemic rats and size-separated from other mucosal cells by the elutriation technique. The total ECL cell number was twofold higher in hypergastrinemic rats than in normogastrinemic rats, and most of the cells appeared in elutriation fractions where large cells predominate. The ECL cells of the different fractions were analyzed by quantitative electron microscopy. Normal-sized ECL cells from hypergastrinemic rats displayed a reduced number of secretory vesicles (probably because of degranulation) compared with normal-sized ECL cells from normogastrinemic rats. Hypertrophic ECL cells from hypergastrinemic rats had an unchanged number of secretory vesicles, supporting the view that such cells fail to respond to gastrin with degranulation. Although both normal-sized and hypertrophic ECL cells from hypergastrinemic rats contained vacuoles, those in the hypertrophic ECL cells were larger and more numerous. In addition, hypertrophic ECL cells were found to contain numerous, prominent lipofuscin bodies which are the presumed end product of crinophagia. Conceivably therefore, large vacuoles and lipofuscin bodies cause functional impairment of the hypertrophic ECL cells.  相似文献   

16.
The oxyntic mucosa of rat and mouse stomach harbors histamine-producing ECL cells and ghrelin-producing A-like cells. The ECL cells are known to be active when the circulating gastrin levels are elevated in response to food intake. The A-like cells are the main source of circulating ghrelin. In response to starvation, the circulating ghrelin is elevated as a hunger signal. The aim of the present work was to study the correlation between the immunoreactivities and cellular activities of the ECL cells and A-like cells. Rats were either fed or fasted for 48 h and mice for 24 h. Immunohistochemical examination with antiserum against chromogranin A-derived fragment pancreastatin revealed both the ECL cells and the A-like cells without a difference between fasted and fed animals. Histamine was limited to the ECL cells with no significant difference between fasted and fed animals. Histidine decarboxylase (HDC) immunoreactivity occurred predominately in the ECL cells of the fed, but not fasted, animals in which the HDC enzymatic activity in the oxyntic mucosa was higher than in fasted animals. Ghrelin immunoreactivity was increased in terms of intensity, but not cell density in fasted animals. Thus, the immunoreactivities of ECL cells and A-like cells might be affected by starvation.  相似文献   

17.
The oxyntic mucosa of rat and mouse stomach harbors histamine-producing ECL cells and ghrelin-producing A-like cells. The ECL cells are known to be active when the circulating gastrin levels are elevated in response to food intake. The A-like cells are the main source of circulating ghrelin. In response to starvation, the circulating ghrelin is elevated as a hunger signal. The aim of the present work was to study the correlation between the immunoreactivities and cellular activities of the ECL cells and A-like cells. Rats were either fed or fasted for 48 h and mice for 24 h. Immunohistochemical examination with antiserum against chromogranin A-derived fragment pancreastatin revealed both the ECL cells and the A-like cells without a difference between fasted and fed animals. Histamine was limited to the ECL cells with no significant difference between fasted and fed animals. Histidine decarboxylase (HDC) immunoreactivity occurred predominately in the ECL cells of the fed, but not fasted, animals in which the HDC enzymatic activity in the oxyntic mucosa was higher than in fasted animals. Ghrelin immunoreactivity was increased in terms of intensity, but not cell density in fasted animals. Thus, the immunoreactivities of ECL cells and A-like cells might be affected by starvation.  相似文献   

18.
The ECL cells in the oxyntic mucosa of rat stomach produce histamine and chromogranin A-derived peptides such as pancreastatin. The cells respond to gastrin via cholecystokinin-2 (CCK2) receptors. A CCK2 receptor blockade was induced by treatment (for up to 8 weeks) with two receptor antagonists, YM022 and YF476. Changes in ECL-cell morphology were examined by immunocytochemistry and electron microscopy, while changes in ECL cell-related biochemical parameters were monitored by measuring serum pancreastatin and oxyntic mucosal pancreastatin, and histamine concentrations, and histidine decarboxylase (HDC) activity. The CCK2 receptor blockade reduced the ECL-cell density only marginally, if at all, but transformed the ECL cells from slender, elongated cells with prominent projections to small, spherical cells without projections. The Golgi complex and the rough endoplasmic reticulum were diminished. Secretory vesicles were greatly reduced in volume density in the trans Golgi area. Circulating pancreastatin concentration and oxyntic mucosal HDC activity were lowered within a few hours. Oxyntic mucosal histamine and pancreastatin concentrations were reduced only gradually. The CCK2 receptor blockade was found to prevent the effects of omeprazole-evoked hypergastrinaemia on the ECL-cell activity and density. In conclusion, gastrin, acting on CCK2 receptors, is needed to maintain the shape, size and activity of the ECL cells, but not for maintaining the ECL-cell population.  相似文献   

19.
Relationship of ECL cells and gastric neoplasia.   总被引:3,自引:0,他引:3  
The enterochromaffin-like (ECL) cell in the oxyntic mucosa has a key role in the regulation of gastric secretion since it synthesizes and releases the histamine regulating the acid secretion from the parietal cell. Gastrin is the main regulator of the ECL cell function and growth. Long-term hypergastrinemia induces ECL cell hyperplasia, and if continued, neoplasia. ECL cell carcinoids occur in man after long-term hypergastrinemia in conditions like pernicious anemia and gastrinoma. There is also accumulating evidence that a proportion of gastric carcinomas of the diffuse type is derived from the ECL cell. Furthermore, the ECL cell may, by producing substances with angiogenic effects (histamine and basic fibroblast growth factor), be particularly prone to develop malignant tumors. Although the general opinion is that gastrin itself has a direct effect on the oxyntic mucosal stem cell, it cannot be excluded that the general trophic effect of gastrin on the oxyntic mucosa is mediated by histamine or other substances from the ECL cell, and that the ECL cell, therefore, could play a role also in the tumorigenesis/carcinogenesis of gastric carcinomas of intestinal type.  相似文献   

20.
Summary Somatostatin cells in the stomach of the rat have a characteristic shape and distribution. In the antral mucosa they occur together with gastrin cells and enterochromaffin cells at the base of the glands. In the oxyntic mucosa they are scattered along the entire glands with some predominance in the zone of parietal cells. Throughout the gastric mucosa the somatostatin cells possess long and slender processes that emerge from the base of the cell and end in clublike swellings. Such processes appear to contact a certain proportion of neighbouring gastrin cells in the antral mucosa and parietal cells in the oxyntic mucosa.Exogenous somatostatin given by intravenous infusion to conscious rats counteracted the release of gastrin stimulated by feeding, elevated antral pH or vagal excitation. Gastrin causes parietal cells to secrete HCl and endocrine cells in the oxyntic mucosa to mobilise and synthesise histamine. Somatostatin is known to block the response of the parietal cells to gastrin. In contrast, somatostatin did not block the response of the histamine-storing endocrine cells to gastrin, perhaps because these endocrine cells lack receptors to somatostatin. Conceivably, somatostatin in the gastric mucosa has a paracrine mode of action. The observations of the present study suggest that somatostatin may affect some, but not all of the various cell types in the stomach. Under physiological conditions this selectivity may be achieved in the following ways: 1) Communication may be based on direct cell-to-cell contact. 2) Only certain cell types are supplied with somatostatin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号