首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
2.
3.
The structural and regulatory tetracycline resistance genes of transposon Tn10 are located on a 2,700-base pair HpaI fragment. We have used eight tetracycline-sensitive mutations in the 2,700-base pair fragment, cloned into two compatible plasmids, to demonstrate that two complementation groups are required for tetracycline resistance. By genetic recombination with plasmids containing the regulatory or structural regions for resistance, we have determined that both complementation groups reside within the structural region. The complementation groups, designated tetA and tetB, are proximal and distal, respectively, to the promoter for the tetracycline resistance structural region. The tetB mutations are in the portion of the structural region that is known to encode the 36,000-molecular-weight, inner-membrane TET protein. The levels of tetracycline resistance expressed during complementation suggest a complex interaction between the products of the tetA and tetB loci.  相似文献   

4.
5.
We have identified a novel family of plasmids, each containing very short monomeric units, in Podospora anserina longevity mutants. These plasmids, termed small mitochondrial DNAs (sMt-DNAs), are derived from a highly ordered 368-base pair region of the mitochondrial genome. A total of five direct repeat sequences and seven significant regions of dyad symmetry (i.e. palindromes) were found within a 434-base pair mitochondrial sequence, which includes this 368-base pair region. Mitochondrial DNA rearrangements accompany the formation of these small plasmids indicating their derivation from a plastic region of the mitochondrial genome. A possible relationship between the direct repeat sequences, the palindromic regions, and the excision process is discussed.  相似文献   

6.
We have sub-cloned from the Eco RI-H fragments of the IncFII plasmid R100 a 260-bp EcoRI fragment, using the promoter-cloning vehicle, pBRH4, (The Inc FII plasmid codes for the mer operon, and pBRH4 expresses tetracycline resistance only when the deleted tet promoter has been replaced by another sequence that can serve as a promotor). With the 260-bp fragment inserted, the derivative plasmid, pFB4, directs the expression of tetracycline resistance only if there is a second plasmid in the strain that carries the merR-positive regulatory element. Under these conditions, the level of tetracycline resistance is directly proportional to the concentration of Hg2+ present in the medium. The 260-bp fragment also allows low-level constitutive expression of tet resistance when transactivated with merR mutants that have a "micro-constitutive" phenotype. The 260-bp mer promoter fragment contains a single HincII site; there is also but one HincII site in the EcoRI-H fragment of R100 from which the promoter fragment was derived. Restriction analysis of purified Eco RI-H DNA shows that the single HincII site is at 550 bp from the "right"terminus of the IS1b element, which is also present in the EcoRI-H fragment. Because of its biological activity and its location within the "H" fragment, this promoter is very likely a promoter for the structural genes of the operon.  相似文献   

7.
8.
9.
10.
Plasmid pUA466, a 45-kilobase transmissible tetracycline resistance plasmid from Campylobacter jejuni was mapped with AvaI, AvaII, BclI, HincII, PstI, XhoI, and XbaI. The resistance determinant was cloned and expressed in Escherichia coli and was homologous with a class M determinant from Streptococcus spp.  相似文献   

11.
Two transposons, Tn4351 and Tn4400, which were originally isolated from the obligate anaerobe Bacteroides fragilis, carry a tetracycline resistance (Tcr) gene that confers resistance only on aerobically grown Escherichia coli. This aerobic Tcr gene, designated tetX, has been shown previously to act by chemically modifying tetracycline in a reaction that appears to require oxygen. We have now obtained the DNA sequence of tetX and 0.6 kb of its upstream region from Tn4400. Analysis of the DNA sequence of tetX revealed that this gene encoded a 43.7-kDa protein. The deduced amino acid sequence of the amino terminus of the protein had homology with a number of enzymes, all of which had in common a requirement for NAD(P). In an earlier study, we had observed that disrupted cells, unlike intact cells, could not carry out the alteration of tetracycline. We have now shown that if NADPH (1 mM) is added to the disrupted cell preparation, alteration of tetracycline occurs. Thus, TetX appears to be an NADP-requiring oxidoreductase. Tn4400 conferred a fivefold-lower level of tetracycline resistance than Tn4351. This finding appears to be due to a lower level of expression of the tetX on Tn4400, because the activity of a tetX-lacZ fusion from Tn4400 was 10-fold lower than that of the same fusion from Tn4351. A comparison of the sequence of the tetX region on Tn4351 with that on Tn4400 showed that the only difference between the upstream regions of the two transposons was a 4-base change 350 bp upstream of the start of the tetX coding region. The 4-base change difference creates a good consensus -35 region on Tn4351 that is not present on Tn4400 and could be creating an extra promoter.  相似文献   

12.
The cutinase gene from Fusarium solani f. sp. pisi (Nectria hematococa) was cloned and sequenced. Sau3A fragments of genomic DNA from the fungus were cloned in a lambda Charon 35 vector. When restriction fragments generated from the inserts were screened with 5' and 3' probes from cutinase cDNA, a 5.5-kilobase SstI fragment hybridized with both probes, suggesting the presence of the entire cutinase gene. A 2,818-base pair segment was sequenced, revealing a 690-nucleotide open reading frame that was identical to that found in the cutinase cDNA with a single 51-base pair intron. Transformation vectors were constructed containing a promoterless gene for hygromycin resistance, which was translationally fused to flanking sequences of the cutinase gene. When protoplasts and mycelia were transformed with these vectors, hygromycin-resistant transformants were obtained. Successful transformation was assessed by Southern blot analysis by using radiolabeled probes for the hygromycin resistance gene and the putative promoter. The results of Southern blot analysis indicated that the plasmid had integrated into the Fusarium genome and that the antibiotic resistance was a manifestation of the promoter activity of the cutinase flanking sequences. Transformation of Colletotrichum capsici with the same construct confirmed the promoter activity of the flanking region and the integration of the foreign DNA. Transformation and deletion analysis showed that promoter activity resided within the 360 nucleotides immediately 5' to the cutinase initiation codon.  相似文献   

13.
A cDNA coding for the non-histone chromosomal protein HMG-I, or its isoform HMG-Y, was isolated from a murine Friend cell library using synthetic oligonucleotide hybridization probes. Sequence analysis showed that the 1670-base pair full length cDNA insert consists of a 201-base pair, G/C-rich (74%), 5'-untranslated region, a 288-base pair amino acid coding sequence, and an unusually long 1182-base pair 3'-untranslated region. The deduced 96-residue amino acid coding sequence of the murine HMG-I(Y) cDNA is very similar to the reported amino acid sequence of human HMG-I, except that it lacks 11 internal amino acids reported in the human protein. Based on Southern blot hybridization analysis of genomic DNA, there appear to be fewer than five copies of HMG-I(Y) genes in the haploid murine genome. These murine HMG-I(Y) genes contain a large (at least 890 base pairs) exon that includes most, or all, of the 3'-untranslated region; whereas the much shorter 5'-untranslated region and amino acid coding sequences are interrupted by at least one intron. A single size class (approximately 1700 nucleotides in murine cells and 2000 nucleotides in human cells) of HMG-I(Y) mRNAs was detected at high levels in total RNA extracts from rapidly dividing, transformed cells, but to a lesser extent, or not at all, in extracts from slowly or non-dividing cells.  相似文献   

14.
15.
The tetQ-rteA-rteB operon of the Bacteroides conjugative transposon CTnDOT is responsible for tetracycline control of the excision and transfer of CTnDOT. Previous studies revealed that tetracycline control of this operon occurred at the translational level and involved a hairpin structure located within the 130-base leader sequence that lies between the promoter of tetQ and the start codon of the gene. This hairpin structure is formed by two sequences, designated Hp1 and Hp8. Hp8 contains the ribosome binding site for tetQ. Examination of the leader region sequence revealed three sequences that might encode a leader peptide. One was only 3 amino acids long. The other two were 16 amino acids long. By introducing stop codons into the peptide coding regions, we have now shown that the 3-amino-acid peptide is the one that is essential for tetracycline control. Between Hp1 and Hp8 lies an 85-bp region that contains other possible RNA hairpin structures. Deletion analysis of this intervening DNA segment has now identified a sequence, designated Hp2, which is essential for tetracycline regulation. This sequence could form a short hairpin structure with Hp1. Mutations that made the Hp1-Hp2 structure more stable caused nearly constitutively high expression of the operon. Thus, stalling of ribosomes on the 3-amino-acid leader peptide could favor formation of the Hp1-Hp2 structure and thus preclude formation of the Hp1-Hp8 structure, releasing the ribosome binding site of tetQ. Finally, comparison of the CTnDOT tetQ leader regions with upstream regions of five tetQ genes found in other elements reveals that the sequences are virtually identical, suggesting that translational attenuation is responsible for control of tetracycline resistance in these other cases as well.  相似文献   

16.
The herpes simplex virus type 1 genome (160 kilobases) contains three origins of DNA synthesis: two copies of oriS located within the repeated sequences flanking the short unique arm (US), and one copy of oriL located within the long unique arm (UL). Precise localization and characterization of oriL have been severely hampered by the inability to clone sequences which contain it (coordinates 0.398 to 0.413) in an undeleted form in bacteria. We report herein the successful cloning of sequences between 0.398 to 0.413 in an undeleted form, using a yeast cloning vector. Sequence analysis of a 425-base pair fragment spanning the deletion-prone region has revealed a perfect 144-base pair palindrome with striking homology to oriS. In a functional assay, the undeleted clone was amplified when functions from herpes simplex virus type 1 were supplied in trans, whereas clones with deletions of 55 base pairs or more were not amplified.  相似文献   

17.
A cleavage map of a recombinant plasmid carrying Tn10 was constructed for 13 different restriction enzymes. The Tn10 region of this plasmid contains cleavage sites for BamHI, AvaI, BglI, BglII, EcoRI, XbaI, HincII, HindIII, and HpaI. Restriction enzymes PstI, SmaI, KpnI, XhoI, SalI, and PvuI do not cleave within the Tn10 element. This map confirms the previously reported structure of this transposon; it is composed of a unique sequence (approximately6,400 base pairs long), which in part codes for the tetracycline resistance functions and is bounded by inverted repeats (approximately 1,450 base pairs long).  相似文献   

18.
19.
The DNA hybridization procedure of Southern has been used to search for homology between the transposable kanamycin resistance determinant Tn5 and sequences in the chromosome of Escherichia coli K-12. No homology was detected under conditions in which a segment homologous to 5% or more of the 5,300-base pair Tn5 element would have been seen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号