首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
The development of new strategies to enhance resistance of plants to pathogens is instrumental in preventing agricultural losses. Lesion mimic, the spontaneous formation of lesions resembling hypersensitive response lesions in the absence of a pathogen, is a dramatic phenotype occasionally induced upon expression of certain transgenes in plants. These transgenes simulate the presence of a pathogen and, therefore, activate the plant anti-pathogen defense mechanisms and induce a state of systemic resistance. Lesion mimic genes have been successfully used to enhance the resistance of a number of different plants to pathogen attack. However, constitutive expression of these genes in plants is associated with the spontaneous formation of lesions on leaves and stems, reduced growth, and lower yield. We tested the possibility of using a wound-inducible promoter to control the expression of bacterio-opsin (bO), a transgene that confers a lesion mimic phenotype in tobacco and tomato plants when constitutively expressed. We found that plants with inducible expression of bO did not develop spontaneous lesions. Nevertheless, under controlled laboratory conditions, they were found to be resistant to infection by pathogens. The activation of defense mechanisms by the bO gene was not constitutive, and occurred in response to wounding or pathogen infection. Furthermore, wounding of transgenic tobacco plants resulted in the induction of systemic resistance to pathogen attack within 48 h. Our findings provide a promising initial assessment for the use of wound-inducible promoters as a new strategy to enhance pathogen resistance in transgenic crops by means of lesion mimic genes.  相似文献   

3.
Yuan B  Shen X  Li X  Xu C  Wang S 《Planta》2007,226(4):953-960
Mitogen-activated protein kinase (MAPK) cascades play important roles in diverse developmental and physiological processes of plants, including pathogen-induced defense responses. Although at least 17 rice MAPKs have been identified and more than half of these MAPK genes have been shown to be pathogen or elicitor responsive, the exact role of most of the MAPKs in host-pathogen interaction is unknown. Here we report that OsMPK6 is an important regulator in rice disease resistance. Suppressing OsMPK6 or knocking out of OsMPK6 enhanced rice resistance to different races of Xanthomonas oryzae pv. oryzae, causing bacterial blight, one of the most devastating diseases of rice worldwide. The resistant plants showed increased expression of a subset of defense-responsive genes functioning in the NH1 (an Arabidopsis NPR1 orthologue)-involved defense signal transduction pathway. These results suggest that OsMPK6 functions as a repressor to regulate rice defense responses upon bacterial invasion. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Active defense mechanisms of plants against pathogens often include a rapid plant cell death known as the hypersensitive cell death (HCD). Hypersensitive response-assisting protein (HRAP) isolated from sweet pepper intensifies the harpinPss-mediated HCD. Here we demonstrate that constitutive expression of the hrap gene in Arabidopsis results in an enhanced disease resistance towards soft rot pathogen, E. carotovora subsp. carotovora. This resistance was due to the induction of HCD since different HCD markers viz. Athsr3, Athsr4, ion leakage, H2O2 and protein kinase were induced. One of the elicitor harpin proteins, HrpN, from Erwinia carotovora subsp. carotovora was able to induce a stronger HCD in hrap-Arabidopsis than non-transgenic controls. To elucidate the role of HrpN, we used E. carotovora subsp. carotovora defective in HrpN production. The hrpN mutant did not induce disease resistance or HCD markers in hrap-Arabidopsis. These results imply that the disease resistance of hrap-Arabidopsis against a virulent pathogen is harpin dependent.  相似文献   

5.
Y. Bashan  S. Diab  Y. Okon 《Plant and Soil》1982,68(2):161-170
Summary A population ofXanthomonas campestris pv.vesicatoria developed as endophytes in the leaves and rhizosphere of apparently symptomless plants grown under mist but not under dry conditions. The pathogen survired for long periods on, and could be isolated from, the surface of infested dried seeds, inoculated sandy loam soil, dried leaves, and the rhizosphere of pepper and of other non-host plants. In addition, small numbers of the pathogen survived for 18 months in a field previously cropped with pepper diseased with bacterial scab. Healthy nursery or mature plants developed symptoms while growing in soil containing infested leaves, either buried or placed on the soil surface.  相似文献   

6.
Thioredoxins (TRXs) are distributed ubiquitously in prokaryotic and eukaryotic organisms. Plants have the most complex forms of TRXs. The functional roles of such TRXs have been studied in abiotic stress but their roles in plant defense responses against biotic stresses have been less well studied. Here, we identified an h-type TRX gene from pepper, CaTRXh1, and characterized its possible effect on Type II nonhost resistance, which entails localized programmed cell death in response to nonhost pathogens. Peptide sequences of CaTRXh1 showed a high degree of similarity with TRXhs from tobacco and Arabidopsis thaliana. Southern blot analyses revealed that CaTRXh1 was present as a single copy in the pepper genome. Intriguingly, leaf infiltration by Xanthomonas axonopodis pv. glycines 8ra, eliciting a visible type II nonhost hypersensitive response (HR), and its type III secretion-system null mutant 8–13, eliciting a type I nonhost non-HR, both induced CaTRXh1 at a level similar to that of pathogenesis-related protein 4, an HR marker gene in pepper. More surprisingly, expression of CaTRXh1 was significantly increased when X. axonopodis pv. vesicatoria race 3 infiltrated the leaf of a pepper cultivar containing a resistance gene, but not with infiltration of a susceptible pepper cultivar. Taken together, our study suggests that the expression of CaTRXh1 has a critical role in HR-mediated active defense responses in pepper. GenBank accession number: EF371503.  相似文献   

7.
Plant lipoxygenases (LOXs) are key enzymes involved in the generation of fatty acid derivatives, called oxylipins. In tobacco, LOX gene expression and activity are very low in healthy tissues and are highly enhanced in response to infection by Phytophthora parasitica nicotianae and to elicitor treatment. We previously showed, using antisense-LOX1 plants, that expression of the tobacco LOX1 gene is required for the race-cultivar specific resistance of tobacco to Phytophthora parasitica nicotianae. In order to investigate the effect of over-expressing a LOX gene on plant resistance, we transformed tobacco plants with the LOX1 coding sequence fused to the CaMV 35S promoter. Four transgenic lines with enhanced levels of LOX protein and specific activity over control plants were selected for further analysis. These plants were macroscopically indistinguishable from WT plants. Upon stem inoculation, the sense-LOX1 plants displayed a significantly decreased susceptibility to virulent races of Phytophthora parasitica nicotianae, stem lesions being 2- to 3-fold shorter in the transgenic lines than in WT plants. Using a root inoculation assay, the survival rate of sense-LOX1 seedlings was increased about 4-fold compared to their WT counterparts, with 60 to 80% of transgenic plants vs 15 to 20% of WT controls remaining healthy following inoculation with Phytophthora parasitica nicotianae. This is the first demonstration that the over-expression of a LOX gene is sufficient to reduce the susceptibility of a host plant to an oomycete pathogen.  相似文献   

8.
Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-component system-defective mutants, ΔgacA and ΔgacS, and a double mutant, ΔgacAΔgacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported in this paper have been submitted to the DDBJ/GenBank/EMBL databank with the accession numbers AB266103, AB266104, AB266105, AB266106, AB266107, AB266108.  相似文献   

9.
Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2β) in two heterologous systems, i.e. the yeast Saccharomyces cerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2β rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82Δ) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2β under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2β in plant stress responses. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Virus-induced gene silencing (VIGS) offers a rapid and high throughput technique platform for the analysis of gene function in plants. Although routinely used in some Solanaceous species, VIGS system has not been well established in Arabidopsis thaliana (L.) Heynh. We have recently reported some factors that potentially influence tobacco rattle virus (TRV)-mediated VIGS of phytoene desaturase (PDS) and actin gene expression in Arabidopsis. In this study, we have further established that the Agrobacterium strain used for agro-inoculation significantly affects the VIGS efficiency. Strain GV3101 was highly effective; C58C1 and LBA4404 were invalid, while EHA105 was plant growth stage-dependent for TRV-induced gene silencing. Furthermore, the VIGS procedure optimised for the PDS gene was applied for the functional analysis of the disease resistance gene RPS2-mediated resistance pathway. Silencing of RPS2 led to loss of resistance to the otherwise avirulence strain of Pseudomonas syringae pv. tomato DC3000 carrying the avirulence gene AvrRpt2. Silencing of RIN4, a RPS2 repressor gene, gave rise to conversion of compatible interaction to incompatible. Silencing of NDR1, RAR1 and HSP90, known to be required for the RPS2-mediated resistance, resulted in loss of the resistance, while silencing of EDS1 and SGT1b, which are not required for the RPS2-mediated resistance, caused no change of the resistance. These results indicate that the optimised procedure for the TRV-based VIGS is a potentially powerful tool for dissecting the signal transduction pathways of disease resistance in Arabidopsis. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at An erratum to this article is available at .  相似文献   

11.
Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)‐induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3‐OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3‐OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)‐related genes, ICS1 and PR1, were down‐regulated. Accordingly, in LTP3‐OX plants, we observed increased ABA levels and decreased SA levels relative to the wild‐type. We also showed that the LTP3 overexpression‐mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3‐1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA‐independent manner. However, a double mutant consisting of ltp3‐1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down‐regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA–SA balance.  相似文献   

12.
13.
14.
In Sun Hwang  Byung Kook Hwang 《Planta》2010,232(6):1409-1421
Plant cytochrome P450 enzymes are involved in a wide range of biosynthetic reactions, leading to various fatty acid conjugates, plant hormones, or defensive compounds. Herein, we have identified the pepper cytochrome P450 gene CaCYP450A, which is differentially induced during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaCYP450A contains a heme-binding motif, PXFXXGXRXCXG, located in the C-terminal region and a hydrophobic membrane anchor region at the N terminal. Knock-down of CaCYP450A by virus-induced gene silencing (VIGS) led to increased susceptibility to Xcv infection in pepper. CaCYP450A-overexpressing Arabidopsis plants exhibited lower pathogen growth and reduced disease symptoms, and they were more resistant to Pseudomonas syringae pv. tomato (Pst) and Hyaloperonospora arabidopsidis than wild-type plants. Overexpression of CaCYP450A also enhanced H2O2 accumulation and cell death. However, CaCYP450A Arabidopsis ortholog CYP94B3 mutants showed enhanced susceptibility to virulent Pst DC3000, but not to avirulent Pst DC3000 avrRpm1 or virulent H. arabidopsidis infection. Taken together, these results suggest that CaCYP450A is required for defense responses to microbial pathogens in plants. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number HM581974.  相似文献   

15.
16.
Hypersensitive response-assisting protein (HRAP) has been previously reported as an amphipathic plant protein isolated from sweet pepper that intensifies the harpin(Pss)-mediated hypersensitive response (HR). The hrap gene has no appreciable similarity to any other known sequences, and its activity can be rapidly induced by incompatible pathogen infection. To assess the function of the hrap gene in plant disease resistance, the CaMV 35S promoter was used to express sweet pepper hrap in transgenic tobacco. Compared with wild-type tobacco, transgenic tobacco plants exhibit more sensitivity to harpin(Pss) and show resistance to virulent pathogens (Pseudomonas syringae pv. tabaci and Erwinia carotovora subsp. carotovora). This disease resistance of transgenic tobacco does not originate from a constitutive HR, because endogenous level of salicylic acid and hsr203J mRNA showed similarities in transgenic and wildtype tobacco under noninfected conditions. However, following a virulent pathogen infection in hrap transgenic tobacco, hsr203J was rapidly induced and a micro-HR necrosis was visualized by trypan blue staining in the infiltration area. Consequently, we suggest that the disease resistance of transgenic plants may result from the induction of a HR by a virulent pathogen infection.  相似文献   

17.
18.
A given plant species is able to resist most of the potentially pathogenic microorganisms with which it comes in contact. This phenomenon, known as non-host resistance, can be overcome only by a very small number of true pathogens which can use that plant as a host. In some cases, plants have developed mechanisms for overcoming infection by specific races or strains of a true pathogen. This race-specific resistance can be easily manipulated into agronomically important cultivars by plant breeders. We have previously described nine cDNA clones which represent pea genes active during non-host resistance against the fungus Fusarium solani f. sp. phaseoli. In the present work, we have used these cDNAs as probes to compare non-host resistance with race-specific responses of peas against three races of Pseudomonas syringae pv. pisi. Five of the genes most active during non-host resistance were also active in direct correlation with the phenotypic expression of resistance in race-specific reactions of five differential pea cultivars against three races of Pseudomonas syringae pv. pisi.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号