首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1957年,在辽宁省建平县发现了一根古人类肱骨化石,编号PA103。通过同一批龙骨中筛选的哺乳动物化石,吴汝康推断PA103应该为更新世晚期古人类,并对该化石进行了表面形态特征观察和描述。为了对PA103化石的内外结构进行更全面的了解,除了线性测量数据的对比,本文还通过计算机断层扫描技术,结合生物力学和形态示量图分析对建平古人类右侧肱骨化石PA103进行了分析。通过本研究发现,PA103骨干横断面的生物力学粗壮度和力学形状指数明显小于尼安德特人,而与同时期欧亚大陆古人类不利手侧最为接近,这说明建平人右侧肱骨可能不是惯用手,同时,建平人的行为活动应该与同时期同地区的古人类处于同一水平,而小于尼安德特人。整体来看,PA103骨干骨密质厚度和截面惯性矩与近现代人的分布模式较为接近,除局部数值增大外,其整体数值小于近现代人的平均水平,这可能与遗传或行为活动有关,由于缺少古人类化石对比数据,更详细的了解还需后期开展更多相关的研究。  相似文献   

2.
Investigations of cross-sectional geometry in nonhuman primate limb bones typically attribute shape ratios to qualitative behavioral characterizations, e.g., leaper, slow climber, brachiator, or terrestrial vs. arboreal quadruped. Quantitative positional behavioral data, however, have yet to be used in a rigorous evaluation of such shape-behavior connections. African apes represent an ideal population for such an investigation because their relatedness minimizes phylogenetic inertia, they exhibit diverse behavioral repertoires, and their locomotor behaviors are known from multiple studies. Cross-sectional data from femoral and humeral diaphyses were collected for 222 wild-shot specimens, encompassing Pan paniscus and all commonly recognized African ape subspecies. Digital representations of diaphyseal cross sections were acquired via computed tomography at three locations per diaphysis. Locomotor behaviors were pooled broadly into arboreal and terrestrial categories, then partitioned into quadrupedal walking, quadrumanous climbing, scrambling, and suspensory categories. Sex-specific taxonomic differences in ratios of principal moments of area (PMA) were statistically significant more often in the femoral diaphysis than the humeral diaphysis. While it appears difficult to relate a measure of shape (e.g., PMA ratio) to individual locomotor modes, general locomotor differences (e.g., percentage arboreal vs. terrestrial locomotion) are discerned more easily. As percentage of arboreal locomotion for a group increases, average cross sections appear more circular. Associations between PMA ratio and specific locomotor behaviors are less straightforward. Individual behaviors that integrate eccentric limb positions (e.g., arboreal scrambling) may not engender more circular cross sections than behaviors that incorporate repetitive sagittal movements (e.g., quadrupedal walking) in a straightforward manner.  相似文献   

3.
We combined biochemical measurements with novel techniques for image analysis in the rat femur to characterize the location and nature of the defect in mineralization known to occur in growing animals after spaceflight. Concentrations of mineral and osteocalcin were low in the distal half of the diaphysis and concentrations of collagen were low with evidence of increased synthesis in the proximal half of the diaphysis of the flight bones. X-ray microtomography provided semiquantitative data in computer-generated sections of whole wet bone that indicated a longitudinal gradient of decreasing mineralization toward the distal diaphysis, similar to the chemistry results. Analysis of embedded sections by backscattered electrons in a scanning electron microscope revealed distinct patterns of mineral distribution in the proximal, central, and distal regions of the diaphysis and also showed a net reduction in mineral levels toward the distal shaft. Increases in mineral density to higher fractions in controls were less in the flight bones at all three levels, with the most distal cross-sectional area most affected. The combined results from these novel techniques identified the areas of femoral diaphysis most vulnerable to the mineralization defect associated with spaceflight and/or the stress of landing.  相似文献   

4.
Cross‐sectional geometric (CSG) properties of human long bone diaphyses are typically calculated from both periosteal and endosteal contours. Though quantification of both is desirable, periosteal contours alone have provided accurate predictions of CSG properties at the midshaft in previous studies. The relationship between CSG properties calculated from external contours and “true” (endosteal and periosteal) CSG properties, however, has yet to be examined along the whole diaphysis. Cross‐sectional computed tomography scans were taken from 21 locations along humeral, femoral, and tibial diaphyses in 20 adults from a late prehistoric central Illinois Valley cemetery. Mechanical properties calculated from images with (a) artificially filled medullary cavities (“solid”) and (b) true unaltered cross‐sections were compared at each section location using least squares regression. Results indicate that, in this sample, polar second moments of area (J), polar section moduli (Zp), and cross‐sectional shape (Imax/Imin) calculated from periosteal contours correspond strongly with those calculated from cross‐sections that include the medullary cavity. Correlations are high throughout most of the humeral diaphysis and throughout large portions of femoral and tibial diaphyses (R2 = 0.855–0.998, all P < 0.001, %SEE ≤ 8.0, %PE ≤ 5.0), the major exception being the proximal quarter of the tibial diaphysis for J and Zp. The main source of error was identified as variation in %CA. Results reveal that CSG properties quantified from periosteal contours provide comparable results to (and are likely to detect the same differences among individuals as) true CSG properties along large portions of long bone diaphyses. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The Sima de las Palomas, southeastern Spain, has yielded a series of Neandertal postcranial remains, including immature and mature isolated elements and the fragmentary partial skeleton of a young adult (Palomas 92). The remains largely conform to the general late archaic/Neandertal morphological pattern in terms of humeral diaphyseal shape, pectoralis major tuberosity size and pillar thickness, ulnar coronoid process height, manual middle phalangeal epiphyseal breadth, manual distal phalangeal tuberosity shape and breadth, femoral diaphyseal shape, and probably body proportions. Palomas 92 contrasts with the Neandertals in having variably gracile hand remains, a more sellar trapezial metacarpal 1 facet, more anteroposteriorly expanded mid-proximal femoral diaphysis, and less robust pedal proximal phalanges. The Palomas Neandertals contrast with more northern European Neandertals particularly in various reflections of overall body size.  相似文献   

6.
The cortical bone distributions in the femoral necks of apes and humans differ as a result of different loading environments caused by the realignment of the hip abductor apparatus. Femoral neck cortical bone in extant humans is very thin superiorly and thicker inferiorly, while the cortical bone in apes tends to be more uniformly thick. The unique internal anatomy of extant humans allows inferences to be made about primary locomotor function from incomplete femora. Here the differences in cortical bone distributions are quantified using moment coefficient of skewness. Skewness coefficients at two locations along the neck of the 6 million years old African femoral specimen BAR 1002’00 were compared to samples of 9 extant adult humans and 10 adult chimpanzees. The skewness coefficients of cortical bone in the femoral neck of BAR 1002’00 are more similar to those of chimpanzees than to humans, although the contrast is less pronounced in the region closer to the neck-shaft junction than more proximally toward the femoral head; this pattern indicates that in at least one respect this specimen attributed to Orrorin tugenensis manifests structural features suggesting influences of a hip abductor apparatus that had not yet evolved to the same extent as in extant humans.  相似文献   

7.
The Homo habilis OH 62 partial skeleton has played an important, although controversial role in interpretations of early Homo locomotor behavior. Past interpretive problems stemmed from uncertain bone length estimates and comparisons using external bone breadth proportions, which do not clearly distinguish between modern humans and apes. Here, true cross-sectional bone strength measurements of the OH 62 femur and humerus are compared with those of modern humans and chimpanzees, as well as two early H. erectus specimens-KNM-WT 15000 and KNM-ER 1808. The comparative sections include two locations in the femur and two in the humerus in order to encompass the range of possible section positions in the OH 62 specimens. For each combination of section locations, femoral to humeral strength proportions of OH 62 fall below the 95% confidence interval of modern humans, and for most comparisons, within the 95% confidence interval of chimpanzees. In contrast, the two H. erectus specimens both fall within or even above the modern human distributions. This indicates that load distribution between the limbs, and by implication, locomotor behavior, was significantly different in H. habilis from that of H. erectus and modern humans. When considered with other postcranial evidence, the most likely interpretation is that H. habilis, although bipedal when terrestrial, still engaged in frequent arboreal behavior, while H. erectus was a completely committed terrestrial biped. This adds to the evidence that H. habilis (sensu stricto) and H. erectus represent ecologically distinct, parallel lineages during the early Pleistocene.  相似文献   

8.
形态示量图是一种展示三维形态测量信息的二维可视化手段,能有效地反应骨密质厚度的分布特点。虽然现代人、更新世古老型人类和大猿的骨密质厚度分布存在差别,但全新世现代人内部是否有变异存在尚未被充分研究。本文选择全新世华中、华北地区的6个农业人群的34例右侧肱骨标本(23例男性、11例女性),使用形态示量图对其骨干骨密质厚度的分布特征进行了全面分析。在方法上,本文比较了通过厚度最大值和生物力学长度对骨密质厚度进行标准化后分析结果的差别,并验证了主成分分析在形态示量图上的适用性。结果显示,在全新世华中、华北地区的农业人群中,男、女的厚度分布模式存在一定差异,而不同人群男性的差别并不明显。本文虽通过全新世华中、华北地区的农业人群揭示出全新世现代人在肱骨骨干骨密质厚度分布上存在一定程度的变异,但仍需在未来工作中依托本文方法,选择人群种类更丰富、标本量更大、个体变量控制更严格的材料,进一步验证或扩展本文所得结论。  相似文献   

9.
S.-H. Lee   《HOMO》2005,56(3):219-232
Size sexual dimorphism is one of the major components of morphological variation and has been associated with socioecology and behavioral variables such as mating patterns. Although several studies have addressed the magnitude and pattern of sexual dimorphism in Australopithecus afarensis, one of the earliest hominids, consensus has yet to be reached. This paper uses assigned resampling method, a data resampling method to estimate the magnitude of sexual dimorphism without relying on individual sex assessments, to examine the fossil hominid sample from Hadar. Two questions are asked: first, whether sexual dimorphism in a selected sample of skeletal elements of A. afarensis is the same as that in living humans, chimpanzees, or gorillas; and second, whether different skeletal elements reflect variation in sexual dimorphism in the same way. All possible metric variables were used as data in applying the method, including seven variables from three elements (mandibular canine, humerus, femur). Analyses show that A. afarensis is similar in size sexual dimorphism to gorillas in femoral variables, to humans in humeral variables, and to chimpanzees in canine variables. The results of this study are compatible with the hypothesis that the pattern of sexual dimorphism in A. afarensis is different from any that are observed in living humans or apes.  相似文献   

10.
This study compared the capabilities of micro-computed tomography (micro-CT) and dental cone-beam computed tomography (CBCT) in assessing trabecular bone parameters and cortical bone strength. Micro-CT and CBCT scans were applied to 28 femurs from 14 rats to obtain independent measurements of the volumetric cancellous bone mineral density (vCanBMD) in the femoral head, volumetric cortical bone mineral density (vCtBMD) in the femoral diaphysis, cross-sectional moment of inertia (CSMI), and bone strength index (BSI) (=CSMI×vCtBMD). Five structural parameters of the trabecular bone of the femoral head were calculated from micro-CT images. A three-point bending test was then conducted to measure the fracture load of each femur. Bivariate linear Pearson analysis was conducted to calculate the correlation coefficients (r values) of the micro-CT, dental CBCT, and three-point bending measurements. The statistical analyses showed a strong correlation between vCanBMD values obtained using micro-CT and dental CBCT (r=0.830). There were strong or moderate correlation between vCanBMD measured using dental CBCT and five parameters of trabecular structure measured using micro-CT. Additionally, the results were satisfactory regardless of whether micro-CT or dental CBCT was used to measure the femoral diaphysis vCtBMD (r=0.733 and 0.680, respectively), CSMI (r=0.756 and 0.726, respectively), or BSI (r=0.846 and 0.847, respectively) to predict fracture loads. This study has yielded a new method for using dental CBCT to evaluate bone parameters and bone strength; however, further studies are necessary to validate the use of dental CBCT on humans.  相似文献   

11.
《Journal of morphology》2017,278(7):884-895
A histological and morphometric analysis of human metacarpal and carpal anlagen between the 16th and 22nd embryonic weeks was carried out with the aim of studying the establishment of the respective anlage architecture. No differences in the pattern of growth were documented between the peripheral and central zones of the metacarpal epiphyses and those of the carpals. The regulation of longitudinal growth in long bone anlagen occurred in the transition zone between the epiphysis and the diaphysis (homologous to the metaphyseal growth plate cartilage in more advanced developmental stage of the bone). Comparative zonal analysis was conducted to assess the chondrocyte density, the mean chondrocyte lacunar area, the paired chondrocyte polarity in the orthogonal longitudinal and transverse planes, and the lacunar shape transformation in the metacarpal. In transition from epiphysis to diaphysis chondrocyte density decreased and mean lacunar area increased. No significant differences in the chondrocyte maturation cycle were observed between proximal/distal metacarpal epiphyses and the carpal anlagen. The number of paired chondrocyte oriented along the growth vector was significantly higher in both proximal/distal transition zones between epiphysis and diaphysis. Human metacarpals shared with experimental models (like mice and nonmammal tetrapods) an early common chondrocyte maturation cycle but with a different timing due to the slower embryonic and fetal developmental rate of human anlagen.  相似文献   

12.
Cross-sectional properties (areas, second moments of area) have been used extensively for reconstructing the mechanical loading history of long bone shafts. In the absence of a fortuitous break or available computed tomography (CT) facilities, the endosteal and/or periosteal boundaries of a bone may be approximated using alternative noninvasive methods. The present study tests whether cross-sectional geometric properties of human lower limb bones can be adequately estimated using two such techniques: the ellipse model method (EMM), which uses biplanar radiography alone, and the latex cast method (LCM), which involves molding of the subperiosteal contour in combination with biplanar radiography to estimate the contour of the medullary canal. Results of both methods are compared with "true" cross-sectional properties calculated by direct sectioning. The study sample includes matched femora and tibiae of 50 Pecos Pueblo Amerindians. Bone areas and second moments of area were calculated for the midshaft femur and tibia and proximal femoral diaphysis in each individual. Percent differences between methods were derived to evaluate directional (systematic) and absolute (random) error. Multiple regression was also used to investigate the sources of error associated with each method. The results indicate that while the LCM shows generally good correspondence to the true cross-sectional properties, the EMM generally overestimates true parameters. Regression equations are provided to correct this overestimation, and, when applied to another sample, are shown to significantly improve estimates for the femoral midshaft, although corrections are less successful for the other section locations. Our results suggest that the LCM is an adequate substitute for estimating cross-sectional properties when direct sectioning and CT are not feasible. The EMM is a reasonable alternative, although the bias inherent in the method should be corrected if possible, especially when the results of the study are to be compared with data collected using different methods.  相似文献   

13.
Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based (GM) approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. One hundred landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including generalized Procrustes analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.  相似文献   

14.
We combine structural limb data and behavioral data for free-ranging chimpanzees from Ta? (Ivory Coast) and Mahale National Parks (Tanzania) to begin to consider the relationship between individual variation in locomotor activity and morphology. Femoral and humeral cross sections of ten individuals were acquired via computed tomography. Locomotor profiles of seven individuals were constructed from 3387 instantaneous time-point observations (87.4 hours). Within the limited number of suitable chimpanzees, individual variation in locomotor profiles displayed neither clear nor consistent trends with diaphyseal cross-sectional shapes. The percentages of specific locomotor modes did not relate well to diaphyseal shapes since neither infrequent nor frequent locomotor modes varied consistently with shapes. The percentage of arboreal locomotion, rather than estimated body mass, apparently had comparatively greater biological relevance to variation in diaphyseal shape. The mechanical consequences of locomotor modes on femoral and humeral diaphyseal shapes (e.g., orientation of bending strains) may overlap between naturalistic modes more than currently is recognized. Alternatively, diaphyseal shape may be unresponsive to mechanical demands of these specific locomotor modes. More data are needed in order to discern between these possibilities. Increasing the sample to include additional free-ranging chimpanzees, or primates in general, as well as devoting more attention to the mechanics of a greater variety of naturalistic locomotor modes would be fruitful to understanding the behavioral basis of diaphyseal shapes.  相似文献   

15.
This study investigates the morphological basis of differences between humans and chimpanzees in the kinematical and dynamical parameters of the musculature of the thumb. It is partly intended to test an hypothesis that human thumb muscles can exert significantly greater torques, due to larger muscle cross-sectional areas or to longer tendon moment arms or to both. We focus on the estimation of the potentials of thumb muscles to exert torques about joint axes in a sample of eight chimpanzee cadaver hands. The potential torque of a muscle is estimated by taking the product of a muscle's physiological cross-sectional area (an estimator of force) with its dynamical moment arm (derived from the slope of tendon excursion versus joint angular displacement, obtained during passive movements of cadaver thumb joints). Comparison of our results with similar data obtained for humans at the same Mayo Clinic laboratory shows significant differences between humans and chimpanzees in potential torque of most thumb muscles, those of humans generally exhibiting larger values. The primary reason for the larger torques in humans is that their average moment arms are significantly longer, permitting greater torque for a given muscle size. An additional finding is that chimpanzees and humans differ in the direction of secondary thumb metacarpal movements elicited by contraction of some muscles, as shown by differences in moment arm signs for a given movement in the same muscle. The differences appear to be related to differences in the musculo-skeletal structures of the trapeziometacarpal joint.  相似文献   

16.
魏偏偏 《人类学学报》2020,39(4):616-631
1960年,在云南省丽江市发现了三根古人类股骨,通过地层观察,仅PA108可归为更新世晚期。前人对PA108做了初步报导,为了进一步了解丽江人股骨的演化分类地位和东亚早期现代人股骨形态变异,本文对PA108的内外结构进行了详尽的分析。研究发现,PA108具有明显的早期现代人特征,即明显的股骨粗线、骨干中部后侧骨密质最厚和中部横断面轮廓形状偏椭圆。PA108标本也有一定的特殊性,体现在骨干中近端和中部骨密质厚度分布上,这可能与其股骨嵴发育较弱有关,这一特征也导致了PA108与其他东亚早期现代人之间的形态差异,这些形态变异进一步扩大了目前已知的东亚地区早期现代人变异范围。同时,在采用骨密质厚度分布模式进行分类时,建议关注股骨骨干中部骨密质最厚部位。  相似文献   

17.
Surface areas of humeral and femoral heads scale largely as a function of body size. However, differences in the relative sizes of these articular surfaces are correlated with differential joint mobility and force transmission through fore- and hindlimbs. They can therefore assist interpretation of the positional behavior of extinct species. In this paper, we document variation in ratios of humeral head surface area to femoral head surface area among extant primates and other mammals. We then examine a group of extinct primates: the subfossil lemurs of Madagascar. Many Malagasy le murs, including some giant extinct species with very long forelimbs and short hindlimbs, have relatively small humeral heads and large femoral heads. We explore the adaptive implications of this pattern. © 1995 Wiley-Liss, Inc.  相似文献   

18.
To understand the mechanical effects of different modes of locomotion on the femoral neck of chimpanzees, we investigated the cross-sectional morphology of the femoral neck of 4 chimpanzees (Pan troglodytes schweinfurthii) collected from the Mahale Mountains, Tanzania. We performed serial computed tomography (CT) scans of the neck from the femoral head to the base of the neck perpendicular to the long axis of the neck. We measured the cortical thickness of the serial 5 cross sections of the neck region every 45° around the circumference, i.e., 8 points per section, and examined the cross-sectional properties of the mid-section. When we compared the superior and inferior parts of the cortical thickness of the femoral neck, the inferior part exhibited the greatest cortical thickness whereas the superior part had the smallest values in every specimen. Researchers have also observed such regional differences between superior and inferior cortical thicknesses in bipedal humans and other primates, although these differences are not as large in the chimpanzee as in bipedal hominini. The present study differed from the past study on hominini and chimpanzees in that the superior anterior (SA) part exhibited greater cortical thickness in chimpanzees. We believe these observations reflect the structural strengthening of parts of the chimpanzee femoral neck that is needed to accommodate the mechanical loads imposed by arboreal vertical climbing and terrestrial quadrupedal and bipedal locomotion.  相似文献   

19.
A sexual dimorphism more marked than in living humans has been claimed for European Middle Pleistocene humans, Neandertals and prehistoric modern humans. In this paper, body size and cranial capacity variation are studied in the Sima de los Huesos Middle Pleistocene sample. This is the largest sample of non-modern humans found to date from one single site, and with all skeletal elements represented. Since the techniques available to estimate the degree of sexual dimorphism in small palaeontological samples are all unsatisfactory, we have used the bootstraping method to asses the magnitude of the variation in the Sima de los Huesos sample compared to modern human intrapopulational variation. We analyze size variation without attempting to sex the specimens a priori. Anatomical regions investigated are scapular glenoid fossa; acetabulum; humeral proximal and distal epiphyses; ulnar proximal epiphysis; radial neck; proximal femur; humeral, femoral, ulnar and tibial shaft; lumbosacral joint; patella; calcaneum; and talar trochlea. In the Sima de los Huesos sample only the humeral midshaft perimeter shows an unusual high variation (only when it is expressed by the maximum ratio, not by the coefficient of variation). In spite of that the cranial capacity range at Sima de los Huesos almost spans the rest of the European and African Middle Pleistocene range. The maximum ratio is in the central part of the distribution of modern human samples. Thus, the hypothesis of a greater sexual dimorphism in Middle Pleistocene populations than in modern populations is not supported by either cranial or postcranial evidence from Sima de los Huesos. Am J Phys Anthropol 106:19–33, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The reasons for the increase in fracture rates with age are not fully understood. It is known that there is a decrease in bone mass with a presumed loss of strength. This decrease may possibly be compensated for by changes in cross-sectional geometry. Previous studies, which have been limited by lack of information on subjects’ heights and weights, were not able to resolve this issue. In this study, measurements of cross-sectional geometry (area and second moments of area) from 107 specimens of human femoral diaphysis from subjects aged 21–92 years were analysed. Mathematical models of the variation in bone geometry with age were developed. These models included the effects of sex, height and weight. Values of parameters from these models were then used in a biomechanical analysis of the static stresses at the mid-shaft of the femur. Results indicate that although there was a reduction in cortical area in old age, bone tissue was redistributed so that neither bending stresses in the coronal plane nor torsional stresses were higher in old age than in young adulthood. An additional finding was that at any age women had smaller bones, less cortical bone area and higher bone stresses than men. This finding may have some bearing on the higher fracture incidence seen in older women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号