首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Inteins possess two different enzymatic activities, self-catalyzed protein splicing and site-specific DNA cleavage. These endonucleases, which are classified as part of the homing endonuclease family, initiate the mobility of their genetic elements into homologous alleles. They recognize long asymmetric nucleotide sequences and cleave both DNA strands in a monomer form. We present here the 2.1 A crystal structure of the archaeal PI-PfuI intein from Pyroccocus furiosus. The structure reveals a unique domain, designated here as the Stirrup domain, which is inserted between the Hint domain and an endonuclease domain. The horseshoe-shaped Hint domain contains a catalytic center for protein splicing, which involves both N and C-terminal residues. The endonuclease domain, which is inserted into the Hint domain, consists of two copies of substructure related by an internal pseudo 2-fold axis. In contrast with the I-CreI homing endonuclease, PI-PfuI possibly has two asymmetric catalytic sites at the center of a putative DNA-binding cleft formed by a pair of four-stranded beta-sheets. DNase I footprinting experiments showed that PI-PfuI covers more than 30 bp of the substrate asymmetrically across the cleavage site. A docking model of the DNA-enzyme complex suggests that the endonuclease domain covers the 20 bp DNA duplex encompassing the cleavage site, whereas the Stirrup domain could make an additional contact with another upstream 10 bp region. For the double-strand break, the two strands in the DNA duplex were cleaved by PI-PfuI with different efficiencies. We suggest that the cleavage of each strand is catalyzed by each of the two non-equivalent active sites.  相似文献   

15.
R R Higgins  A Becker 《The EMBO journal》1994,13(24):6162-6171
lambda terminase is an ATP-interactive, site-specific endonuclease comprising the products of lambda genes Nu1 and A. Terminase binds to cos, at the junction of two chromosomes in a concatemer, catalyzes cos cleavage and initiates the packaging of lambda DNA into proheads. cos consists of a nicking domain, cosN, where terminase cleaves to regenerate the 12 nucleotide cohesive ends of mature lambda chromosomes and a binding domain, cosB, where terminase binds to 16 bp repeat sequences called R3, R2 and R1. Evidence is presented that terminase is a single-strand endonuclease that can nick DNA by one of two mechanisms, both of which require ATP. (i) When bound to any R site, terminase nicks the strand which, within that R site, is purine-rich; the position of this nick is 47 +/- 2 nucleotides away from the mid-point of that R site, measured in the 3' direction; (ii) enzymes that are not bound to R sites nick DNA within certain specific sequences that resemble cosN half sites. These two modes of action are nicely combined for the R3-bound protomer that nicks the bottom strand at position N1 in cosN since the interval between N1 and the R3 midpoint is 47 nucleotides. Within cosN, the bottom and top strand nicks are generated by a rigid protein couple with a 2-fold rotational symmetry. The location of both of these nicks, however, is gauged asymmetrically from R3, 47 nucleotides away. Again, R1 and R2 are separated by 47 bp and orient bound protomers towards each other but, unless the DNA between these R sites is lengthened, the enzymes do not nick, indicating an inhibitory gpA-gpNu1 apposition.  相似文献   

16.
17.
The nick site at the origin of transfer, oriT, of IncI1 plasmid R64 was determined. A site-specific and strand-specific cleavage of the phosphodiester bond was introduced during relaxation of the oriT plasmid DNA. Cleavage occurred between 2'-deoxyguanosine and thymidine residues, within the 44-bp oriT core sequence. The nick site was located 8 bp from the 17-bp repeat. A protein appeared to be associated with the cleaved DNA strand at the oriT site following relaxation. This protein was observed to bind to the 5' end of the cleaved strand, since the 5'-phosphate of the cleaved strand was resistant to the phosphate exchange reaction by polynucleotide kinase. In contrast, the 3' end of the cleaved strand appeared free, since it was susceptible to primer extension by DNA polymerase I. The global similarity of the oriT structures of IncI1 and IncP plasmids is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号