首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothiocyanates (ITCs) are phytochemicals with promising cancer-preventive potential. To elucidate the mechanism of cytotoxicity of ITCs, their accumulation by cells and the role of intracellular glutathione, fluorescent 9-isothiocyanatoacridine (AcITC) was synthesized. The kinetic parameters for the reactions of AcITC with thiols were estimated and the influence of AcITC on human chronic myeloid leukemia cell line (K562) in regard to intracellular glutathione was studied. Cytotoxicity was evaluated by MTT assay, IC(50)=29.2 +/- 2.5 microM (48 h incubation). This acridine derivative was able to induce apoptosis of cells (morphological changes of cells and DNA fragmentation were observed) at least within certain dose that only decreased the level of intracellular glutathione, excessive doses (completely depleted intracellular pool of glutathione) induced necrosis rather than apoptosis. Our results indicated that apoptosis of leukemia cells induced by ITC is possible only if intracellular glutathione is not entirely depleted.  相似文献   

2.
The effects of 6-formylpterin on tumor necrosis factor (TNF)-alpha-induced apoptotic cell injury were studied in cultured rat hepatocytes. The incubation of the hepatocytes with TNF-alpha and actinomycin D (ActD) induced the apoptotic cell injury. The level of aspartate transaminase (AST) in the culture supernatant increased, and the cell viability, estimated by mitochondrial respiration (MTT assay), decreased. The DNA fragmentation and the caspase 3-like activity, which are characterized to apoptosis, increased. When the hepatocytes were incubated with 100-500 microM 6-formylpterin, the intracellular formation of reactive oxygen species (ROS) was observed, and the ratio of reduced and oxidized glutathione (GSH/GSSG) of whole cell lysate decreased. The co-incubation of the TNF-alpha/ActD-treated hepatocytes with 100-500 microM 6-formylpterin attenuated the TNF-alpha/ActD-induced apoptotic cell injury. The level of AST decreased and the cell viability increased. Both the DNA fragmentation and the caspase 3-like activity decreased. The caspases, executors of apoptosis, are known to require a reduced cystein in their active site to function, and the intact intracellular GSH/GSSG is essential for the caspase activation. Therefore, our findings suggest that intracellular ROS generated by 6-formylpterin decline the intracellular redox state to an oxidant state, which suppresses the caspase activity and prevents the apoptotic cell injury of hepatocytes.  相似文献   

3.
Direct exposure of human hepatoma cell line SMMC-7721 to hydrogen peroxide (H2O2) can induce apoptosis. Apoptosis induced by H2O2 was inhibited by cycloheximide, actinomycin D, 3-aminobenzamide, EGTA or Zn2+. H2O2 can increase the level of intracellular Ca2+, downregulate GSH levels, slightly induce lipid peroxidation, and lead to change in the ratio of reduced ion components to oxidized ion components of cells. Analysis of flow cytometry indicates that H2O2 decreases the level of Bcl-2. The data indicate that H2O2-induced apoptosis requires new mRNA and protein syntheses; H2O2 can activate Ca2+/Mg2+-dependent endonuclease leading to internucleosomal DNA fragmentation and activation of poly (ADP-ribose) polymerase interfering with the energy metabolism of the cell. The H2O2 downregulation of GSH may be more important for apoptosis than H2O2 induction of lipid peroxidation, and the H2O2 induced changes in redox status of the cell may be among the original events which lead up to other biochemical changes.  相似文献   

4.
J Liu  H M Shen  C N Ong 《Life sciences》2001,69(16):1833-1850
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.  相似文献   

5.
Present study investigated whether endosulfan, an organochlorine pesticide is able to deplete glutathione (GSH) and induce apoptosis in human peripheral blood mononuclear cells (PBMC) in vitro. The role of oxidative stress in the induction of apoptosis was also evaluated by the measurement of the GSH level in cell lysate. The protective role of N-acetylcysteine (NAC) on endosulfan-induced apoptosis was also studied. Isolated human PBMC were exposed to increasing concentrations (0-100 microM) of endosulfan (alpha/beta at 70:30 mixture) alone and in combination with NAC (20 microM) up to 24 h. Apoptotic cell death was determined by Annexin-V Cy3.18 binding and DNA fragmentation assays. Cellular GSH level was measured using dithionitrobenzene. Endosulfan at low concentrations, i.e., 5 and 10 microM, did not cause significant death during 6 h/12 h incubation, whereas a concentration-dependent cell death was observed at 24 h. DNA fragmentation analysis revealed no appreciable difference between control cells and 5 microM/10 microM endosulfan treated cells, where only high molecular weight DNA band was observed. Significant ladder formation was observed at higher concentration, which is indicative of apoptotic cell death. Intracellular GSH levels decreased significantly in endosulfan-treated cells in a dose-dependent manner, showing a close correlation between oxidative stress and degree of apoptosis of PBMC. Cotreatment with NAC attenuated GSH depletion as well as apoptosis. Our results provide experimental evidence of involvement of oxidative stress in endosulfan-mediated apoptosis in human PBMC in vitro.  相似文献   

6.
Ebselen, 2-phenyl-1,2-benzisoselenazol-3(2H)-one, is a synthetic seleno-organic compound with antioxidant capability. In the present study, we systematically examined the ability of ebselen to induce apoptosis in a human hepatoma cell line, HepG(2). Ebselen-induced apoptosis was evaluated by (i) TdT-mediated dUTP nick end labeling assay; (ii) analysis of sub-G1 cells; (iii) cell morphology, including cell size and granularity examination; and (iv) DNA gel electrophoresis. The results showed that ebselen was able to induce typical apoptosis in HepG(2) cells in a dose- and time-dependent manner. In order to explore the possible mechanisms involved in ebselen-induced apoptosis, the effect of ebselen on intracellular thiol concentrations including reduced glutathione (GSH) and protein thiols and the effect of N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) pretreatment on ebselen-induced apoptosis were investigated. It was found that (i) ebselen rapidly depleted intracellular GSH and protein thiols, moreover, the depletion preceded the occurrence of apoptosis; (ii) NAC, a precursor of intracellular GSH synthesis, significantly alleviated ebselen-induced apoptosis; and (iii) BSO, a specific inhibitor of intracellular GSH synthesis, augmented ebselen-induced apoptosis significantly. Taken together, the present study demonstrates that ebselen is able to induce apoptosis in HepG(2) cells, most probably through rapid depletion of intracellular thiols.  相似文献   

7.
We investigated the effect of intracellular glutathione (GSH) levels on Natural Killer-mediated apoptosis in cisplatin-resistant K562 cells. K562/B6 and K562/C9 are cisplatin-resistant K562 cells less susceptible to lysis by natural killer cells. Cisplatin-resistant K562 cells did not present the apoptotic pattern of DNA fragmentation as it was observed for their maternal counterparts. K562/B6 and K562/C9 cell lines produce 1.6- and 1.9-times more GSH than K562 cells. Treatment of both cell lines with D,L-buthionine-(S,R)-sulfoximine (BSO, a gamma-glutamyl cysteine synthetase inhibitor) decreased GSH levels and augmented cell death induced by NK cells via a necrotic rather than an apoptotic process. Proliferating cell nuclear antigen (PCNA) expression was elevated in cisplatin-resistant K562 subclones, and the reduction of GSH levels after treatment with BSO decreased the expression of PCNA. These results suggest that the GSH level affects the NK cell-mediated cell death of cisplatin-resistant K562 cells by inducing necrosis rather than apoptosis.  相似文献   

8.
Glutamate induced glutathione (GSH) depletion in C6 rat glioma cells, which resulted in cell death. This cell death seemed to be apoptosis through accumulation of reactive oxygen species (ROS) or hydroperoxides representing cytochrome c release from mitochondria and internucleosomal DNA fragmentation. A significant increase of 12-lipoxygenase enzyme activity was observed in the presence of arachidonic acid (AA) under GSH depletion induced by glutamate. AA promoted the glutamate-induced cell death, which reduced caspase-3 activity and diminished internucleosomal DNA fragmentation. Furthermore, AA reduced intracellular NAD, ATP and membrane potentials, which indicated dysfunction of the mitochondrial membrane. Protease inhibitors such as N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and 3, 4-dichloroisocumarin (DCI) but no Ac-DEVD, a caspase inhibitor, suppressed the glutamate-induced cell death. AA reduced the inhibitory effect of TPCK and DCI on the glutamate-induced cell death. These results suggest that AA promotes cell death by inducing necrosis from caspase-3-independent apoptosis. This might occur through lipid peroxidation initiated by ROS or lipid hydroperoxides generated during GSH depletion in C6 cells.  相似文献   

9.
Intracellular glutathione (GSH) depletion induced by buthionine sulfoximine (BSO) caused cell death that seemed to be apoptosis in C6 rat glioma cells. Arachidonic acid (AA) promoted BSO-induced cell death by accumulating reactive oxygen species (ROS) or hydroperoxides. AA inhibited caspase-3 activation and internucleosomal DNA fragmentation during the BSO-induced GSH depletion. Furthermore, AA reduced intracellular ATP content, induced dysfunction of mitochondrial membrane and enhanced 8-hydroxy-2'-deoxyguanosine (8-OH-dG) production. There was significant increase of 12-lipoxygenase activity in the presence of AA under the BSO-induced GSH depletion in C6 cells. These results suggest that AA promotes cell death by changing to necrosis from apoptosis through lipid peroxidation initiated by lipid hydroperoxides produced by 12-lipoxygenase under the GSH depletion in C6 cells. Some ROS such as hydroperoxide produced by unknown pathway make hydroxy radicals and induce 8-OH-dG formation in the cells. The conversion of apoptosis to necrosis may be a possible event under GSH depleted conditions.  相似文献   

10.
Selenium is a widely studied dietary anticancer agent. Among various selenium compounds, the methylated forms appear to be particularly effective in cancer prevention. Intracellular glutathione (GSH) is known to be involved in the metabolism of many methylated forms of selenium. In this study, we investigated the role of intracellular GSH in methylseleninic acid (MSeA)-induced apoptosis in human hepatoma (HepG(2)) cells. MSeA was shown to deplete intracellular GSH rapidly, preceding the typical apoptotic changes such as DNA fragmentation as measured by the TUNEL assay. When the intracellular GSH concentration was enhanced using N-acetylcysteiene (NAC) (a GSH synthesis precursor) and decreased using buthionine sufoxamine (BSO) (a GSH synthesis inhibitor), NAC markedly augmented MSeA-induced apoptosis, while BSO significantly inhibited MSeA-induced apoptosis. Different from the effect of sodium selenite, there was no measurable superoxide radical level in MSeA-treated cells. These observations suggest that intracellular GSH mainly acts as a cofactor to facilitate MSeA-induced apoptosis, while its antioxidant function becomes largely irrelevant. It is thus postulated that some cancer cells, such as liver cancer cells with higher level of intracellular GSH, would be more susceptible to MSeA cytotoxicity.  相似文献   

11.
The effects of N-acetyl-L-cysteine (L-NAC), N,N-diacetyl-L-cystine (oxidized form of L-NAC) and N-acetyl-D-cysteine on the intracellular glutathione (GSH) level and their toxicity were investigated in the human melanoma cell culture IGR1. L-NAC applied in 3 mM concentration for 24 hr decreased; when applied for 48 hr it did not alter the intracellular GSH level. Treatment with 1 mM L-NAC for 24 hr had no effect on cellular glutathione, whereas the same concentration applied for 48 hr resulted in an increase in the level of GSH. Both concentrations also induced cell injury as determined by protein assay and trypan blue staining. N,N-diacetyl-L-cystine (0.5 and 1.5 mM, 24 hr) induced a decrease in cellular glutathione content without any apparent cell toxicity. D-NAC (1 and 3 mM, 24 hr) did not influence the GSH level of the melanoma cells; however, it had toxic effects resulting in cell loss.  相似文献   

12.
We have investigated the role played by GSH efflux in apoptosis of human HaCaT keratinocytes induced by UVA irradiation. UVA irradiation of HaCaT cells caused a rapid rise in GSH efflux across the intact cell membrane, followed by an increase in apoptosis. GSH efflux was stimulated by glucose and was reduced by the addition of exogenous GSH and intracellular GSH depletion by buthionine sulfoximine, suggesting that GSH transport is active and is influenced by the GSH concentration gradient across the cell membrane. Verapamil and cyclosporin A, blockers of the multidrug resistance-associated protein, decreased UVA-induced GSH efflux. GSH efflux occurred within 2 h of UVA irradiation, suggesting that the stimulation of GSH efflux is due to an increase in the activity of pre-existing multidrug resistance-associated protein transporter carrier. Although inhibition of GSH efflux did not affect caspase activation and DNA fragmentation, it delayed the gradual increase in plasma membrane permeability and reduced phosphatidylserine translocation in HaCaT cells. It is therefore likely that upon UVA irradiation, GSH efflux increased the intracellular oxidative stress without intervention of reactive oxygen species, thus resulting in more phosphatidylserine externalization and membrane rearrangement. These provide targets for macrophage recognition and phagocytosis and thus minimize the potential to invoke inflammation or neoplastic transformation.  相似文献   

13.
Although the depletion of reduced glutathione (GSH) has been observed in a variety of apoptotic systems, little is known about the mechanism of GSH depletion. In this study we used polarized MDCK cells to study the GSH flux during ricin-induced apoptosis. Here we report that the specific accumulation of GSH occurred in the basolateral medium during ricin treatment with similar kinetics to in apoptotic changes such as an increase in caspase-3 like activity and DNA fragmentation, while there was no significant increase in the GSH level in apical medium. These results suggest that GSH efflux occurred through a GSH-specific channel or transporter located in the basolateral membrane domain of polarized MDCK cells undergoing apoptosis. Treatment with other protein toxins such as modeccin, Pseudomonas toxin, and diphtheria toxin, which can induce apoptotic cell death, also resulted in selective GSH efflux from the basolateral side. Thus, GSH efflux through a specific transporter may be a common step of apoptosis induced by these toxins, while these toxins have different intoxication mechanisms leading to protein synthesis inhibition. Pretreatment of cells with Z-Asp-CH(2)-DCB, a caspase family inhibitor, inhibited ricin-induced basolateral GSH efflux as well as DNA fragmentation, suggesting that the activation of caspases, i.e. those that are inhibited by Z-Asp-CH(2)-DCB, is implicated in the opening of the GSH transporter.  相似文献   

14.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

15.
Chromosomal DNA and mitochondrial dysfunctions play a role on mammalian cell death induced by oxidative stress. The major biochemical dysfunction of chromosome is the presence of an ordered cleavage of the DNA backborn, which is separated and visualized as an electrophoretic pattern of fragments. Oxidative stress provides chromatin dysfunction such as single strand and double strand DNA fragmentation leading to cell death. More than 1 Mb of giant DNA, 200-800 kb or 50-300 kb high molecular weight (HMW) DNA and internucleosomal DNA fragments are produced during apoptosis or necrosis induced by oxidative stress such as glutathione (GSH) depletion in several types of mammalian cells. Reactive oxygen species (ROS)-mediated DNA fragmentation is enhanced by polyunsaturated fatty acids including arachidonic acid or their hydroperoxides, leading to necrosis. Mitochondrial dysfunction on decrease of trans membrane potential, accumulation of ROS, membrane permeability transition and release of apoptotic factors during apoptosis or necrosis has been implicated. This review refers to the correlation of chromosomal DNA fragmentation and apoptosis or necrosis induced by GSH depletion, and the possible mechanisms of oxidative stress-induced cell death.  相似文献   

16.
Expression of determined Asn-bound glycans (N-glycans) in cell surface glycoproteins regulates different processes in tumour cell biology. Specific patterns of N-glycosylation are displayed by highly metastatic cells and it has been shown that inhibition of N-glycan processing restrains cell proliferation and induces cell death via apoptosis. However, the mechanisms by which different N-glycosylation states may regulate cell viability and growth are not understood. Since malignant cells express high levels of intracellular glutathione (GSH) and a reduction of intracellular GSH induces cell death via apoptosis, we investigated whether GSH was involved in the induction of apoptosis by removal of cell surface N-glycans. We found that removal of N-glycans from cell surface proteins by treating the rhabdomyosarcoma cell line S4MH with tunicamycin or N-glycosidase resulted in a reduction in intracellular GSH content and cell death via apoptosis. Moreover, GSH depletion caused by the specific inhibitor of GSH synthesis BSO induced apoptosis in S4MH cells. This data indicates that adequate N-glycosylation of cell surface glycoproteins is required for maintenance of intracellular GSH levels that are necessary for cell survival and proliferation.  相似文献   

17.
The ectoenzyme, gamma-glutamyl transpeptidase (GGT, EC ) cleaves glutathione (GSH) to facilitate the recapture of cysteine for synthesis of intracellular GSH. The impact of GGT expression on cell survival during oxidative stress was investigated using the human B cell lymphoblastoid cell line, Ramos. Ramos cells did not express surface GGT and exhibited no GGT enzyme activity. In contrast, Ramos cells stably transfected with the human GGT cDNA expressed high levels of surface GGT and enzymatic activity. GGT-transfected Ramos cells were protected from apoptosis when cultured in cyst(e)ine-deficient medium. The GGT-expressing cells also had lower levels of intracellular reactive oxygen species (ROS). Homocysteic acid and alanine, inhibitors of cystine and cysteine uptake, respectively, caused increased ROS content and diminished viability of GGT expressing cells. Exogenous GSH increased the viability of the GGT-transfected cells more effectively than that of control cells, whereas the products of GSH metabolism prevented death of both the control and GGT-transfected cells comparably. These data indicate that GGT cleavage of GSH and the subsequent recapture of cysteine and cystine allow cells to maintain low levels of cellular ROS and thereby avoid apoptosis induced by oxidative stress.  相似文献   

18.
d -galactosamine ( d -GalN) toxicity is a useful experimental model of liver failure in human. It has been previously observed that PGE 1 treatment reduced necrosis and apoptosis induced by d -GalN in rats. Primary cultured rat hepatocytes were used to evaluate if intracellular oxidative stress was involved during the induction of apoptosis and necrosis by d -GalN (0-40 mM). Also, the present study investigated if PGE 1 (1 μM) was equally potent reducing both types of cell death. The presence of hypodiploid cells, DNA fragmentation and caspase-3 activation were used as a marker of hepatocyte apoptosis. Necrosis was measured by lactate dehydrogenase (LDH) release. Oxidative stress was evaluated by the intracellular production of hydrogen peroxide (H 2 O 2 ), the disturbances on the mitochondrial transmembrane potential (MTP), thiobarbituric-reacting substances (TBARS) release and the GSH/GSSG ratio. Data showed that intermediate range of d -GalN concentrations (2.5-10 mM) induced apoptosis in association with a moderate oxidative stress. High d -GalN concentration (40 mM) induced a reduction of all parameters associated with apoptosis and enhanced all those related to necrosis and intracellular oxidative stress, including a reduction of GSH/GSSG ratio and MTP in comparison with d -GalN (2.5-10 mM)-treated cells. Although PGE 1 reduced apoptosis induced by d -GalN, it was not able to reduce the oxidative stress and cell necrosis induced by the hepatotoxin in spite to its ability to abolish the GSH depletion.  相似文献   

19.
20.
Glutamate and buthionine sulfoximine (BSO) both reduce intracellular glutathione (GSH) concentration but by different mechanisms, and thereby induce cell death in C6 rat glioma cells. The effects of lipid peroxidation on chromosomal DNA damage during the GSH depletion-induced cell death were assessed. Polyunsaturated fatty acids (PUFA), such as arachidonic acid (AA), gamma-linolenic acid and linoleic acid enhanced lipid peroxidation, induced a loss of membrane integrity and consequently promoted 1-2 Mbp giant DNA fragmentation under both glutamate- and BSO-induced GSH-depletion. Treated C6 cells had 3'-OH termini in their DNA which were recognized by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) analysis. Antioxidants capable of scavenging reactive oxygen species and lipid radicals and iron or copper scavengers inhibited both lipid peroxidation and 1-2 Mbp giant DNA fragmentation, consequently protecting against cell death under GSH depletion. These results suggest that GSH depletion induces lipid peroxidation and leads to 1-2 Mbp giant DNA fragmentation; and that PUFAs can promote giant DNA fragmentation and 3'-OH termini in chromosomal DNA enhancing lipid peroxidation of C6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号