首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In any partially inbred population, 'junctions' are the loci that form boundaries between segments of ancestral chromosomes. Here we show that the expected number of junctions per Morgan in such a population is linearly related to the inbreeding coefficient of the population, with a maximum in a completely inbred population corresponding to the prediction given by Stam (1980). We further show that high-density marker maps (fully informative markers with average densities of up to 200 per cM) will fail to detect a significant proportion of the junctions present in highly inbred populations. The number of junctions detected is lower than that which would be expected if junctions were distributed randomly along the chromosome, and we show that junctions are not, in fact randomly spaced. This non-random spacing of junctions significantly increases the number of markers that is required to detect 90% of the junctions present on any chromosome: a marker count of at least 12 times the number of junctions present will be needed to detect this proportion.  相似文献   

2.
Linkage disequilibrium (LD) reflects coinheritance of an ancestral segment by chromosomes in a population. To begin to understand the effects of population history on the extent of LD, we model the length of a tract of identity-by-descent (IBD) between two chromosomes in a finite, random mating population. The variance of an IBD tract is large: a model described by (Genet. Res. Cambridge 35 (1980) 131) underestimates this variance. Using Fisher's concept of junctions, we predict the mean length of an IBD tract, given the age of the population and the population sizes over time. We derive results also for subdivided populations, given times of subdivision events and sizes of the resulting subpopulations. The model demonstrates that population growth and subdivision strongly affect the expected length of an IBD tract in small populations. These effects are less dramatic in large populations.  相似文献   

3.
When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.  相似文献   

4.
The shift from outcrossing to self-fertilization is among the most common evolutionary transitions in flowering plants. Until recently, however, a genome-wide view of this transition has been obscured by both a dearth of appropriate data and the lack of appropriate population genomic methods to interpret such data. Here, we present a novel population genomic analysis detailing the origin of the selfing species, Capsella rubella, which recently split from its outcrossing sister, Capsella grandiflora. Due to the recency of the split, much of the variation within C. rubella is also found within C. grandiflora. We can therefore identify genomic regions where two C. rubella individuals have inherited the same or different segments of ancestral diversity (i.e. founding haplotypes) present in C. rubella''s founder(s). Based on this analysis, we show that C. rubella was founded by multiple individuals drawn from a diverse ancestral population closely related to extant C. grandiflora, that drift and selection have rapidly homogenized most of this ancestral variation since C. rubella''s founding, and that little novel variation has accumulated within this time. Despite the extensive loss of ancestral variation, the approximately 25% of the genome for which two C. rubella individuals have inherited different founding haplotypes makes up roughly 90% of the genetic variation between them. To extend these findings, we develop a coalescent model that utilizes the inferred frequency of founding haplotypes and variation within founding haplotypes to estimate that C. rubella was founded by a potentially large number of individuals between 50 and 100 kya, and has subsequently experienced a twenty-fold reduction in its effective population size. As population genomic data from an increasing number of outcrossing/selfing pairs are generated, analyses like the one developed here will facilitate a fine-scaled view of the evolutionary and demographic impact of the transition to self-fertilization.  相似文献   

5.
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population approximately 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history of population bottlenecks and suggest that they began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian populations.  相似文献   

6.
The composition of genetic variation in a population or species is shaped by the number of events that led to the founding of the group. We consider a neutral coalescent model of two populations, where a derived population is founded as an offshoot of an ancestral population. For a given locus, using both recursive and nonrecursive approaches, we compute the probability distribution of the number of genetic founding lineages that have given rise to the derived population. This number of genetic founding lineages is defined as the number of ancestral individuals that contributed at the locus to the present-day derived population, and is formulated in terms of interspecific coalescence events. The effects of sample size and divergence time on the probability distribution of the number of founding lineages are studied in detail. For 99.99% of the loci in the derived population to each have one founding lineage, the two populations must be separated for 9.9N generations. However, only approximately 0.87N generations must pass since divergence for 99.99% of the loci to have <6 founding lineages. Our results are useful as a prior expectation on the number of founding lineages in scenarios that involve the evolution of one population from the splitting of an ancestral group, such as in the colonization of islands, the formation of polyploid species, and the domestication of crops and livestock from wild ancestors.  相似文献   

7.
The next generation of QTL (quantitative trait loci) mapping populations have been designed with multiple founders, where one to a number of generations of intercrossing are introduced prior to the inbreeding phase to increase accumulated recombinations and thus mapping resolution. Examples of such populations are Collaborative Cross (CC) in mice and Multiparent Advanced Generation Inter-Cross (MAGIC) lines in Arabidopsis. The genomes of the produced inbred lines are fine-grained random mosaics of the founder genomes. In this article, we present a novel framework for modeling ancestral origin processes along two homologous autosomal chromosomes from mapping populations, which is a major component in the reconstruction of the ancestral origins of each line for QTL mapping. We construct a general continuous time Markov model for ancestral origin processes, where the rate matrix is deduced from the expected densities of various types of junctions (recombination breakpoints). The model can be applied to monoecious populations with or without self-fertilizations and to dioecious populations with two separate sexes. The analytic expressions for map expansions and expected junction densities are obtained for mapping populations that have stage-wise constant mating schemes, such as CC and MAGIC. Our studies on the breeding design of MAGIC populations show that the intercross mating schemes do not matter much for large population size and that the overall expected junction density, and thus map resolution, are approximately proportional to the inverse of the number of founders.  相似文献   

8.
A 15-year cytogenetic survey on one population of the leaf litter frog Eleutherodactylus maussi in northern Venezuela confirmed the existence of multiple XXAA male symbol /XAA(Y) female symbol sex chromosomes which originated by a centric (Robertsonian) fusion between the original Y chromosome and an autosome. 95% of the male individuals in this population are carriers of this Y-autosome fusion. In male meiosis the XAA(Y) sex chromosomes pair in the expected trivalent configuration. In the same population, 5% of the male animals still possess the original, free XY sex chromosomes. In a second population of E. maussi analyzed, all male specimens are characterized by these ancestral XY chromosomes which form normal bivalents in meiosis. E. maussi apparently represents the first vertebrate species discovered in which a derived Y-autosome fusion still coexists with the ancestral free XY sex chromosomes. The free XY sex chromosomes, as well as the multiple XA(Y) sex chromosomes are still in a very primitive (homomorphic) stage of differentiation. With no banding technique applied it is possible to distinguish the Y from the X. DNA flow cytometric measurements show that the genome of E. maussi is among the largest in the anuran family Leptodactylidae. The present study also supplies further data on differential chromosome banding and fluorescence in situ hybridization experiments in this amphibian species.  相似文献   

9.
Canidae species fall into two categories with respect to their chromosome composition: those with high numbered largely acrocentric karyotypes and others with a low numbered principally metacentric karyotype. Those species with low numbered metacentric karyotypes are derived from multiple independent fusions of chromosome segments found as acrocentric chromosomes in the high numbered species. Extensive chromosome homology is apparent among acrocentric chromosome arms within Canidae species; however, little chromosome arm homology exists between Canidae species and those from other Carnivore families. Here we use Zoo-FISH (fluorescent in situ hybridization, also called chromosomal painting) probes from flow-sorted chromosomes of the Japanese raccoon dog (Nyctereutes procyonoides) to examine two phylogenetically divergent canids, the arctic fox (Alopex lagopus) and the crab-eating fox (Cerdocyon thous). The results affirm intra-canid chromosome homologies, also implicated by G-banding. In addition, painting probes from domestic cat (Felis catus), representative of the ancestral carnivore karyotype (ACK), and giant panda (Ailuropoda melanoleuca) were used to define primitive homologous segments apparent between canids and other carnivore families. Canid chromosomes seem unique among carnivores in that many canid chromosome arms are mosaics of two to four homology segments of the ACK chromosome arms. The mosaic pattern apparently preceded the divergence of modern canid species since conserved homology segments among different canid species are common, even though those segments are rearranged relative to the ancestral carnivore genome arrangement. The results indicate an ancestral episode of extensive centric fission leading to an ancestral canid genome organization that was subsequently reorganized by multiple chromosome fusion events in some but not all Canidae lineages.  相似文献   

10.
Maternal and paternal homologues of many chromosome types can be differentiated on the basis of their peak position in Hoechst 33258 versus chromomycin A3 bivariate flow karyotypes. We demonstrate here the magnitude of DNA content differences among normal chromosomes of the same type. Significant peak-position differences between homologues were observed for an average of four chromosome types in each of the karyotypes of 98 different individuals. The frequency of individuals with differences in homologue peak positions varied among chromosome types: e.g., chromosome 15, 61%; chromosome 3, 4%. Flow karyotypes of 33 unrelated individuals were compared to determine the range of peak position among normal chromosomes. Chromosomes Y, 21, 22, 15, 16, 13, 14, and 19 were most heteromorphic, and chromosomes 2-8 and X were least heteromorphic. The largest chromosome 21 was 45% larger than the smallest 21 chromosome observed. The base composition of the variable regions differed among chromosome types. DNA contents of chromosome variants determined from flow karyotypes were closely correlated to measurements of DNA content made of gallocyanin chrome alum-stained metaphase chromosomes on slides. Fluorescence in situ hybridization with chromosome-specific repetitive sequences indicated that variability in their copy number is partly responsible for peak-position variability in some chromosomes. Heteromorphic chromosomes are identified for which parental flow karyotype information will be essential if de novo rearrangements resulting in small DNA content changes are to be detected with flow karyotyping.  相似文献   

11.
 We have mapped QTLs (quantitative trait loci) for an adaptive trait, flowering time, in a selfing annual, Arabidopsis thaliana. To obtain a mapping population we made a cross between an early-summer, annual strain, Li-5, and an individual from a late over-wintering natural population, Naantali. From the backcross to Li-5 298 progeny were grown, of which 93 of the most extreme individuals were genotyped. The data were analysed with both interval mapping and composite interval mapping methods to reveal one major and six minor QTLs, with at least one QTL on each of the five chromosomes. The QTL on chromosome 4 was a major one with an effect of 17.3 days on flowering time and explaining 53.4% of the total variance. The others had effects of at most 6.5 days, and they accounted for only small portions of the variance. Epistasis was indicated between one pair of the QTLs. The result of finding one major QTL and little epistasis agrees with previous studies on flowering time in Arabidopsis thaliana and other species. That several QTLs were found was expected considering the large number of possible candidate loci. In the light of the suggested genetic models of gene action at the candidate loci, epistasis was to be expected. The data showed that major QTLs for adaptive traits can be detected in non-domesticated species. Received: 15 January 1997/Accepted: 21 February 1997  相似文献   

12.
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, Ictonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements.  相似文献   

13.
Chromosome homologies between the Japanese raccoon dog (Nectereutes procyonoides viverrinus, 2n = 39 + 2-4 B chromosomes) and domestic dog (Canis familiaris, 2n = 78) have been established by hybridizing a complete set of canine paint probes onto high-resolution G-banded chromosomes of the raccoon dog. Dog chromosomes 1, 13, and 19 each correspond to two raccoon dog chromosome segments, while the remaining 35 dog autosomes each correspond to a single segment. In total, 38 dog autosome paints revealed 41 conserved segments in the raccoon dog. The use of dog painting probes has enabled integration of the raccoon dog chromosomes into the previously established comparative map for the domestic dog, Arctic fox (Alopex lagopus), and red fox (Vulpes vulpes). Extensive chromosome arm homologies were found among chromosomes of the red fox, Arctic fox, and raccoon dog. Contradicting previous findings, our results show that the raccoon dog does not share a single biarmed autosome in common with the Arctic fox, red fox, or domestic cat. Comparative analysis of the distribution patterns of conserved chromosome segments revealed by dog paints in the genomes of the canids, cats, and human reveals 38 ancestral autosome segments. These segments could represent the ancestral chromosome arms in the karyotype of the most recent ancestor of the Canidae family, which we suggest could have had a low diploid number, based on comparisons with outgroup species.  相似文献   

14.
Canio G. Vosa 《Chromosoma》1973,43(3):269-278
The heteroohromatin of Scilla sibirica, consists of two distinct types: 1) showing enhanced Quinacrine fluorescence and located near the centromere of all the chromosomes of the complement, and 2) with reduced Quinacrine fluorescence and located in various positions along the chromosomes. After a denaturation-reannealing treatment both heterochromatin types are stained by Giemsa, and by acetic-orcein. Acetic-orcein, however, tends to stain preferentially the reduced fluorescence segments. An analysis of chromosome variation in a population of twenty plants, reveals that all the plants are unique in their heterochromatic segment endowment. All the chromosomes are polymorphic but there is a certain constancy for band patterns in individual chromosome types, and for the number of bands per chromosome complement.  相似文献   

15.
Blocks of linkage disequilibrium (LD) in the human genome represent segments of ancestral chromosomes. To investigate the relationship between LD and genealogy, we analysed diversity associated with restriction fragment length polymorphism (RFLP) haplotypes of the 5' beta-globin gene complex. Genealogical analyses were based on sequence alleles that spanned a 12.2-kb interval, covering 3.1 kb around the psibeta gene and 6.2 kb of the delta-globin gene and its 5' flanking sequence known as the R/T region. Diversity was sampled from a Kenyan Luo population where recent malarial selection has contributed to substantial LD. A single common sequence allele spanning the 12.2-kb interval exclusively identified the ancestral chromosome bearing the "Bantu" beta(s) (sickle-cell) RFLP haplotype. Other common 5' RFLP haplotypes comprised interspersed segments from multiple ancestral chromosomes. Nucleotide diversity was similar between psibeta and R/T-delta-globin but was non-uniformly distributed within the R/T-delta-globin region. High diversity associated with the 5' R/T identified two ancestral lineages that probably date back more than 2 million years. Within this genealogy, variation has been introduced into the 3' R/T by gene conversion from other ancestral chromosomes. Diversity in delta-globin was found to lead through parts of the main genealogy but to coalesce in a more recent ancestor. The well-known recombination hotspot is clearly restricted to the region 3' of delta-globin. Our analyses show that, whereas one common haplotype in a block of high LD represents a long segment from a single ancestral chromosome, others are mosaics of short segments from multiple ancestors related in genealogies of unsuspected complexity.  相似文献   

16.
In a large variety of genetic studies, probabilistic inferences are made based on information available in population databases. The accuracy of the estimates based on population samples are highly dependent on the number of chromosomes being analyzed as well as the correct representation of the reference population. For frequency calculations the size of a database is especially critical for haploid markers, and for countries with complex admixture histories it is important to assess possible substructure effects that can influence the coverage of the database. Aiming to establish a representative Brazilian population database for haplotypes based on 23 Y chromosome STRs, more than 2,500 Y chromosomes belonging to Brazilian, European and African populations were analyzed. No matter the differences in the colonization history of the five geopolitical regions that currently exist in Brazil, for the Y chromosome haplotypes of the 23 studied Y-STRs, a lack of genetic heterogeneity was found, together with a predominance of European male lineages in all regions of the country. Therefore, if we do not consider the diverse Native American or Afro-descendent isolates, which are spread through the country, a single Y chromosome haplotype frequency database will adequately represent the urban populations in Brazil. In comparison to the most commonly studied group of 17 Y-STRs, the 23 markers included in this work allowed a high discrimination capacity between haplotypes from non-related individuals within a population and also increased the capacity to discriminate between paternal relatives. Nevertheless, the expected haplotype mutation rate is still not enough to distinguish the Y chromosome profiles of paternally related individuals. Indeed, even for rapidly mutating Y-STRs, a very large number of markers will be necessary to differentiate male lineages from paternal relatives.  相似文献   

17.
A method for estimating the number of founding chromosomes in an isolated population is introduced. The method assumes that n/2 diploid individuals are sampled from a population and that alleles are identified at L unlinked loci. The population is assumed to have been founded T generations in the past by individuals carrying c chromosomes drawn randomly from a known source population, which has also been sampled. If c is small and the population grew rapidly after it was founded, accurate estimates of c can be obtained and those estimates are not sensitive to details of the history of population sizes. If c is larger or the population remained small after it was founded, then estimates of c depend on the history of population sizes. We test the performance of our method on simulated data and demonstrate its use on data from a rainbow trout (Oncorhynchus mykiss) population.  相似文献   

18.
The presumed ancestral karyotype of Muridae, previously reconstructed, is compared with that of a selected Cricetidae species, Akodon a arviculoides. Most of the chromosomes of the presumed ancestral chromosomes of Muridae are homeologous to chromosome arms or segments in the Akodon karyotype. This result strengthens the validity of the reconstruction of the ancestral karyotype for both Muridae and Cricetidae.  相似文献   

19.
In this paper an ancestral karyotype for primates, defining for the first time the ancestral chromosome morphology and the banding patterns, is proposed, and the ancestral syntenic chromosomal segments are identified in the human karyotype. The chromosomal bands that are boundaries of ancestral segments are identified. We have analyzed from data published in the literature 35 different primate species from 19 genera, using the order Scandentia, as well as other published mammalian species as out-groups, and propose an ancestral chromosome number of 2n = 54 for primates, which includes the following chromosomal forms: 1(a+c(1)), 1(b+c(2)), 2a, 2b, 3/21, 4, 5, 6, 7a, 7b, 8, 9, 10a, 10b, 11, 12a/22a, 12b/22b, 13, 14/15, 16a, 16b, 17, 18, 19a, 19b, 20 and X and Y. From this analysis, we have been able to point out the human chromosome bands more "prone" to breakage during the evolutionary pathways and/or pathology processes. We have observed that 89.09% of the human chromosome bands, which are boundaries for ancestral chromosome segments, contain common fragile sites and/or intrachromosomal telomeric-like sequences. A more in depth analysis of twelve different human chromosomes has allowed us to determine that 62.16% of the chromosomal bands implicated in inversions and 100% involved in fusions/fissions correspond to fragile sites, intrachromosomal telomeric-like sequences and/or bands significantly affected by X irradiation. In addition, 73% of the bands affected in pathological processes are co-localized in bands where fragile sites, intrachromosomal telomeric-like sequences, bands significantly affected by X irradiation and/or evolutionary chromosomal bands have been described. Our data also support the hypothesis that chromosomal breakages detected in pathological processes are not randomly distributed along the chromosomes, but rather concentrate in those important evolutionary chromosome bands which correspond to fragile sites and/or intrachromosomal telomeric-like sequences.  相似文献   

20.
B chromosomes are dispensable chromosomes found in >2000 eukaryotic species, usually behaving as genomic parasites. Most B chromosomes seem to be made up of the same kind of DNA sequences present in the A chromosomes. This sequence similarity makes it difficult to obtain specific molecular probes that may permit B-presence diagnosis without cytogenetic analysis. We have developed a sequence-characterized amplified region (SCAR) marker for B chromosomes in the grasshopper Eyprepocnemis plorans, which specifically amplifies a 1510-bp DNA fragment exclusively in B-carrying individuals. Fluorescent in situ hybridization and fiber FISH analyses showed that this marker is a tandemly repeated DNA sequence closely intermingled with 45S rDNA. PCR reactions showed the presence of SCAR-like sequences in the A chromosomes, but in two separate fragments, supporting the intraspecific origin of B chromosomes in this species. SCAR marker DNA sequence showed to be identical in B chromosome variants from several localities from Spain and Morocco, and it was very similar to those found in B chromosome variants from Greece and Armenia. This strongly suggests that this sequence was already present in the ancestral B chromosome of this species. In addition, the scarce sequence variation observed among several B variants from very distant populations suggests either a functional constraint or, more likely, a recent and unique origin for B chromosomes in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号