首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven new microsatellite markers were developed for the Pacific abalone (Haliotis discus hannai, Haliotidae), and allelic variability was compared between a wild population and a hatchery population in Yeosu, Korea. All loci amplified readily and demonstrated allelic variability, with the number of alleles ranging from 6 to 15 in the wild population and from 3 to 12 in farmed populations. Average observed and expected heterozygosities were estimated at 0.65 and 0.77 in the hatchery samples, and 0.79 and 0.87 in the wild samples. These results indicated lower genetic variability in the hatchery population, as compared with the wild population and significant genetic differentiation between the wild population and the hatchery samples (F ST=0.055, p<0.001). These microsatellite loci may be valuable for future population genetic studies and for tracking hatchery samples used in stock enhancement programs.  相似文献   

2.
The threadsail filefish Stephanolepis cirrhifer is a highly commercial fisheries resource in Korea that suffers intensive anthropogenic pressure across much of its range. For basic information about its current genetic status in relation to stock enhancement, the level and distribution of genetic variation between a wild and a hatchery-bred population were investigated using 10 microsatellite markers developed for Thamnaconus modestus. High levels of polymorphism were observed between the two populations. A total of 95 different alleles were found at all loci, with some alleles being unique. The allelic variability ranged from six to 13 in the wild population and from five to 13 in the hatchery one. The average observed and expected heterozygosities were estimated to be 0.72 and 0.80 in the wild sample and 0.70 and 0.79 in the hatchery one, respectively. These results showed similar genetic variability in the hatchery population, as compared with the wild population and significant genetic differentiation between the wild population and the hatchery samples (F ST = 0.016, P < 0.05). Genetic drift in the intensive breeding practices for stock enhancement has probably promoted differentiation between populations. Significant deviations from Hardy-Weinberg equilibrium were detected in both populations. Our results indicate that further studies using species-specific microsatellite markers will be necessary for a more reliable assessment of genetic diversity of the species.  相似文献   

3.
The Pacific oyster, Crassostrea gigas, is the most important and valuable commercial fishery species in Korea. Its farming started 20 years ago and is still rapid expansion in Korea. In this study, to maintain the genetic diversity of this valuable marine resource, possible genetic similarity and differences between the wild population and hatchery population in Tongyeong, Korea were accessed using multiplex assays with nine highly polymorphic microsatellite loci. A total of 250 different alleles were found over all loci. Despite a long history of hatchery practices, very high levels of polymorphism (mean alleles = 22.89 and mean heterozygosity = 0.92) were detected between the two populations. No statistically significant reductions were found in heterozygosity or allelic diversity in the hatchery population compared with the wild population. However, significant genetic heterogeneity was found between two populations. These results provide no evidence to show that hatchery practice of Pacific oyster in Korea has significantly affected the genetic variability of the hatchery stock. Although further studies are needed for comprehensive determinations of the hatchery and wild populations with increased number of Pacific oyster sample collections, information on the genetic variation and differentiation obtained in this study can be applied for genetic monitoring of aquaculture stocks, genetic improvement by selective breeding and designing of more efficient conservation management guidelines for these valuable genetic materials.  相似文献   

4.
Relationships of genetic diversity at microsatellite loci and quantitative traits were examined in hatchery-produced populations of Japanese flounder using a relatively straightforward experiment. Five hatchery populations produced by wild-caught and domesticated broodstocks were used to examine the effects of different levels (one to three generations) of domestication on the genetic characteristics of hatchery populations. Allelic richness at seven microsatellite loci in all hatchery populations was lower than that in a wild population. Genetic variation measured by allelic richness and heterozygosity tended to decrease with an increase in generations of domestication. In addition, the degree of genetic differentiation from a wild population increased with an increase in generations of domestication. Significant differences in three morphometric traits (dorsal and anal fin ray counts and vertebral counts) and three physiological traits (high temperature, salinity and formalin tolerance) were observed among the hatchery populations. The degree of phenotypic difference among populations was larger in morphometric traits than in physiological traits. The divergence pattern of some quantitative traits was similar to that observed at microsatellite loci, suggesting that domestication causes the decrease of genetic variation and the increase of genetic differentiation for some quantitative traits concomitantly with those for microsatellite loci. Significant positive correlation was observed between F ST and the degree of phenotypic difference in the three morphometric traits and formalin tolerance, indicating that genetic variation at microsatellite loci predicts the degree of phenotypic divergence in some quantitative traits.  相似文献   

5.
The hypothesis that effective population sizes are low in hatchery-reared catla ( Catla catla ) from Bangladesh, possibly leading to inbreeding and loss of variation, was tested. The study was based on analysis of seven microsatellite loci in three samples of hatchery-reared catla and four samples representing wild populations. Pair-wise estimates of genetic differentiation between samples were low between wild samples (θ ranging from 0·012 to 0·034), but high between hatchery samples (θ ranging from 0·153 to 0·185), suggesting strong genetic drift in hatcheries. Genetic variation, both in terms of expected heterozygosity and allelic richness, was significantly lower in hatchery samples than in samples of wild catla. Application of a method for reconstructing families among offspring without parental genetic data showed that the hatchery samples consisted of very few half- and full-sib families, whereas the wild samples consisted of a high number of families, suggesting that most individuals were unrelated. Finally, estimation of the effective number of parents ( N b) in the largest sample of hatchery fish confirmed that effective population size was low ( N b= 14·9 for multiallelic loci and N b= 10·6 if alleles were pooled into two composite alleles). The results show that low effective population sizes leading to loss of variation and possibly inbreeding depression should be a matter of serious concern in aquaculture production of catla.  相似文献   

6.
Turbot Scophthalmus maximus is the focus of a rapidly expanding aquaculture industry, while at the same time wild catches appear to be in decline. As a preliminary investigation into the effects of hatchery rearing, genetic variation at three polymorphic microsatellite loci was assessed in two wild populations and two farmed strains of turbot, from Ireland and Norway. Although a considerable loss of rare alleles was observed in the Irish farmed strain, no statistically significant reductions were found in mean heterozygosity or allelic diversity in farmed strains compared to wild populations. Significant genetic heterogeneity was found between wild and farmed samples from each country but not between the two wild populations. Genetic differentiation between the farmed strains was presumed to be caused by drift in the hatcheries. The utility of these particular microsatellite loci in comparing these samples and the importance of molecular genetic testing of farmed strains is stressed.  相似文献   

7.
The population structure of the black rockfish, Sebastes inermis (Sebastidae), was estimated using 10 microsatellite loci developed for S. schlegeli on samples of 174 individuals collected from three wild and three hatchery populations in Korea. Reduced genetic variation was detected in hatchery strains [overall number of alleles (N(A)) = 8.07; allelic richness (A(R)) = 7.37; observed heterozygosity (H(O)) = 0.641] compared with the wild samples (overall N(A) = 8.43; A(R) = 7.83; H(O) = 0.670), but the difference was not significant. Genetic differentiation among the populations was significant (overall F(ST) = 0.0237, P < 0.05). Pairwise F(ST) tests, neighbor-joining tree, and principal component analyses showed significant genetic heterogeneity among the hatchery strains and between wild and hatchery strains, but not among the wild populations, indicating high levels of gene flow along the southern coast of Korea, even though the black rockfish is a benthic, non-migratory marine species. Genetic differentiation among the hatchery strains could reflect genetic drift due to intensive breeding practices. Thus, in the interests of optimal resource management, genetic variation should be monitored and inbreeding controlled within stocks in commercial breeding programs. Information on genetic population structure based on cross-species microsatellite markers can aid in the proper management of S. inermis populations.  相似文献   

8.
There has been very little effort to understand genetic divergence between wild and hatchery populations of masu salmon (Oncorhynchus masou). In this study, we used mitochondrial (mt) NADH dehydrogenase subunit 5 gene (ND5) and six polymorphic nuclear microsatellite DNA loci to compare the genetic variability in three hatchery broodstocks of masu salmon with the variability in eight putative wild masu populations sampled in five rivers including one known source river for the hatchery broodstocks. Both ND5 and microsatellites showed no significant genetic divergence (based on FST estimates) between four annual collections from the source river population, suggesting no change in genetic diversity over this time period. The FST estimates, an analysis of molecular variance (AMOVA), and a neighbor-joining tree using both DNA markers suggested significant differentiation between the three hatchery and all eight putative wild populations. We conclude that genetic diversity of hatchery populations are low relative to putative wild populations of masu salmon, and we discuss the implications for conservation and fisheries management in Hokkaido.  相似文献   

9.
Pacific threadfin, Polydactylus sexfilis, is popular fish in recreational fishing, as well as aquaculture in Hawaii. Its natural population has been continuously declining in the past several decades. Microsatellite DNA markers are useful DNA-based tool for monitoring Pacific threadfin populations. In this study, fifteen Microsatellite (MS) DNA markers were identified from a partial genomic Pacific threadfin DNA library enriched in CA repeats, and six highly-polymorphic microsatellite loci were employed to analyze genetic similarity and differences between the wild population and hatchery population in Oahu Island. A total of 37 alleles were detected at the six MS loci in the two populations. Statistical analysis of fixation index (F(ST)) and analysis of molecular variance (AMOVA) showed no genetic differentiation between the wild and hatchery populations (F(ST) = 0.001, CI(95%) = -0.01-0.021). Both high genetic diversity (H(o) = 0.664-0.674 and H(e) = 0.710-0.715) and Hardy-Weinberg equilibrium were observed in the wild and hatchery populations. Results of genetic bottleneck analysis indicated that the hatchery was founded with sufficient numbers of brooders as inbreeding coefficient is very low (F(IS) = 0.052-0.072) in both wild and hatchery populations. Further studies are needed for comprehensive determinations of genetic varieties of primary founder broodstocks and successive offspring of the hatchery and wild populations with increased number of Pacific threadfin sample collections.  相似文献   

10.
We developed 12 microsatellite loci for the endangered minnow species, Tanichthys albonubes, using PCR-based isolation of microsatellite arrays. These new markers were tested in 26 individuals from a wild population collected from Guangzhou in China and 26 individuals from a cultured strain. The number of alleles ranged from two to nine and the expected heterozygosity from 0.177 to 0.853. The wild population had significantly higher allelic richness than the cultured strain, with a mean allelic richness of 5.52 (range = 3.69-8.64) and 3.13 (range = 1.99-5.73) for the wild population and the cultured strain, respectively. No evidence of a recent bottleneck was detected in the wild population, but it was found in the cultured strain based on the BOTTLENECK test. These primers can be used to understand the demography and to examine genetic differences between the cultured T. albonubes strains and wild populations to help determine conservation and reintroduction strategies.  相似文献   

11.
Polymerase chain reaction (PCR)‐based isolation of microsatellite arrays (PIMA) technique was used to isolate seven polymorphic microsatellite loci in sea bass, Lates calcarifer Bloch. A total of 62 samples of wild and cultivated sea bass collected from a few populations within Peninsular Malaysia were used in the study. For seven polymorphic loci, the number of alleles ranged from four to nine and locus heterozygosities ranged from 0.710 to 1.000. The loci will be useful for studying population structure, genetic variability of wild and hatchery stocks of L. calcarifer and broodstock management purposes.  相似文献   

12.
太平洋牡蛎养殖与野生群体遗传变异的微卫星研究   总被引:3,自引:0,他引:3  
于红  李琪 《遗传学报》2007,34(12):1114-1122
应用微卫星标记技术研究5个中国太平洋牡蛎养殖群体和2个日本太平洋牡蛎野生群体的遗传变异。研究中所使用的7个微卫星位点在养殖和野生群体中都显示出了高多态性,平均等位基因数为19.1~29.9,平均期待杂合度为0.916~0.958。养殖群体和野生群体的平均等位基因丰度及观察杂合度没有显著性差异。遗传分化系数及等位基因杂合度分析显示所有的群体间都有显著性差异。构建的NJ树中,7个群体聚为3支,养殖群体和野生群体可以清楚地分开,在养殖群体中又分为南北两支。分配检验中,97%~100%的正确率证明了微卫星标记在群体识别分析中的可行性。本研究结果对太平洋牡蛎管理模式的设计和选择育种具有重要意义。  相似文献   

13.
Red sea cucumber Stichopus japonicus is the most important and valuable commercial sea cucumber species in Korea. Its farming and stock enhancement started in the early 2000s and is still rapid expansion in Korea. Therefore, the analyses of genetic status of wild and hatchery populations are necessary to maintain the genetic diversity of this valuable marine resource. In this study, possible genetic similarity and differences between the wild population and hatchery population in Jeju, Korea were accessed using multiplex assays with eight highly polymorphic microsatellite loci. High levels of polymorphism were observed between the two populations. A total of 93 different alleles were found. Although a considerable loss of unique alleles and relatively high inbreeding coefficient value were observed in the hatchery samples, no statistically significant reductions were found in heterozygosity or allelic diversity in the hatchery population, compared with the wild population. However, significant genetic heterogeneity was found between two populations. These results suggest that genetic drift has probably promoted differentiation between populations, and stocking intensity in wild populations may correlate with loss of genetic integrity. Therefore, the sustainable exploitation plans of the fishery resource should be developed by applying basic genetic principles combined with molecular monitoring. This genetic baseline information of Korean red sea cucumber has important implications for designing of genetically sustainable restocking programs and more efficient conservation management guidelines for these valuable genetic materials.  相似文献   

14.
Levels of genetic variability at 12 microsatellite loci and 19 single nucleotide polymorphisms in mitochondrial DNA were studied in four farm strains and four wild populations of Atlantic salmon. Within populations, the farm strains showed significantly lower allelic richness and expected heterozygosity than wild populations at the 12 microsatellite loci, but a significantly higher genetic variability with respect to observed number of haplotypes and haplotype diversity in mtDNA. Significant differences in allele- and haplotype-frequencies were observed between farm strains and wild populations, as well as between different farm strains and between different wild populations. The large genetic differentiation at mitochondrial DNA between wild populations (FST = 0.24), suggests that the farm strains attained a high mitochondrial genetic variability when created from different wild populations seven generations ago. A large proportion of this variability remains despite an expected lower effective population size for mitochondrial than nuclear DNA. This is best explained by the particular mating schemes in the breeding programmes, with 2–4 females per male. Our observations suggest that for some genetic polymorphisms farm populations might currently hold equal or higher genetic variability than wild populations, but lower overall genetic variability. In the short-term, genetic interactions between escaped farm salmon and wild salmon might increase genetic variability in wild populations, for some, but not most, genetic polymorphisms. In the long term, further losses of genetic variability in farm populations are expected for all genetic polymorphisms, and genetic variability in wild populations will be reduced if escapes of farm salmon continue.  相似文献   

15.
The spotted sea bass, Lateolabrax maculatus, is popular in recreational fishing and aquaculture in Korea. Its natural population has declined during the past two decades; thus, beginning in the early 2000s stock-enhancement programs were introduced throughout western and southern coastal areas. In this study, genetic similarities and differences between wild and hatchery populations were assessed using multiplex assays with 12 highly polymorphic microsatellite loci; 96 alleles were identified. Although many unique alleles were lost in the hatchery samples, no significant reductions were found in heterozygosity or allelic diversity in the hatchery compared to the wild population. High genetic diversity (He = 0.724–0.761 and Ho = 0.723–0.743), low inbreeding coefficient (F IS = 0.003–0.024) and Hardy–Weinberg equilibrium were observed in both wild and hatchery populations. However, the genetic heterogeneity between the populations was significant. Therefore, genetic drift likely promoted inter-population differentiation, and rapid loss of genetic diversity remains possible. Regarding conservation, genetic variation should be monitored and inbreeding controlled in a commercial breeding program.  相似文献   

16.
Information on genetic variation is essential for conservation and stock improvement programs. Seven dinucleotide microsatellite loci were analyzed to reveal genetic variability in three wild populations (Kella beel, Hakaluki haor, and Shobornokhali beel) and one hatchery population of the freshwater walking catfish, Clarias batrachus, in Bangladesh. Upon PCR amplification, the alleles were separated on polyacrylamide gel using a sequencing gel electrophoresis system and visualized by the silver-staining method. The loci were polymorphic (P95) in all the populations. Differences were observed in number and frequency of alleles as well as heterozygosity in the studied populations. Current gene diversity (He) was higher than expected under mutation-drift equilibrium, significantly in the Hakaluki haor and Shobornokhali beel populations, indicating a recent genetic bottleneck. Population differentiation (FST) values were significant (P<0.05) in all the population pairs. A relatively high level of gene flow and a low level of FST values were found between wild population pairs compared to hatchery-wild pairs. The unweighted pair group method with averages dendrogram based on genetic distance resulted in two major clusters: the hatchery population was alone in one cluster whereas the three wild populations made another cluster. The results reflect some degree of genetic variability in C. batrachus populations indicating potentialities for improving this species through a selective breeding program. The results revealed a recent bottleneck in some wild populations of C. batrachus. Protection of habitat may help increase the population size and lower the risk of vulnerability of the species in the future.  相似文献   

17.
The effects of stocking hatchery trout into wild populations were studied in a Danish river, using microsatellite and mitochondrial DNA (mtDNA) markers. Baseline samples were taken from hatchery trout and wild trout assumed to be unaffected by previous stocking. Also, samples were taken from resident and sea trout from a stocked section of the river. Genetic differentiation between the hatchery strain and the local wild population was modest (microsatellite FST = 0.06). Using assignment tests, more than 90% of individuals from the baseline samples were classified correctly. Assignment tests involving samples from the stocked river section suggested that the contribution by hatchery trout was low among sea trout (< 7%), but high (46%) among resident trout. Hybrid index analysis and a high percentage of mtDNA haplotypes specific to indigenous trout observed among resident trout that were assigned to the hatchery strain suggested that interbreeding took place between hatchery and wild trout. The latter result also indicated that male hatchery trout contributed more to interbreeding than females. We suggest that stronger selection acts against stocked hatchery trout that become anadromous compared to hatchery trout that become resident. As most resident trout are males this could also explain why gene flow from hatchery to wild trout appeared to be male biased. The results show that even despite modest differentiation at neutral loci domesticated trout may still perform worse than local populations and it is important to be aware of differential survival and reproductive success both between life-history types and between sexes.  相似文献   

18.
Analyses of historical samples can provide invaluable information on changes to the genetic composition of natural populations resulting from human activities. Here, we analyse 21 microsatellite loci in historical (archived scales from 1927 to 1956) and contemporary samples of brown trout ( Salmo trutta ) from six neighbouring rivers in Denmark, to compare the genetic structure of wild populations before and after population declines and stocking with nonlocal strains of hatchery trout. We show that all populations have been strongly affected by stocking, with admixture proportions ranging from 14 to 64%. Historical population genetic structure was characterized by isolation by distance and by positive correlations between historical effective population sizes and habitat area within river systems. Contemporary population genetic structure still showed isolation by distance, but also reflected differences among populations in hatchery trout admixture proportions. Despite significant changes to the genetic composition within populations over time, dispersal rates among populations were roughly similar before and after stocking. We also assessed whether population declines or introgression by hatchery strain trout should be the most significant conservation concern in this system. Based on theoretical considerations, we argue that population declines have had limited negative effects for the persistence of adaptive variation, but admixture with hatchery trout may have resulted in reduced local adaptation. Collectively, our study demonstrates the usefulness of analysing historical samples for identifying the most important consequences of human activities on the genetic structure of wild populations.  相似文献   

19.
The population structure of olive flounder Paralichthys olivaceus was estimated using nine polymorphic microsatellite (MS) loci in 459 individuals collected from eight populations, including five wild and three hatchery populations in Korea. Genetic variation in hatchery (mean number of alleles per locus, A = 10·2–12·1; allelic richness, AR = 9·3–10·1; observed heterozygosity, HO = 0·766–0·805) and wild (mean number of alleles per locus, A = 11·8–19·6; allelic richness, AR = 10·9–16·1; observed heterozygosity, HO = 0·820–0·888) samples did not differ significantly, suggesting a sufficient level of genetic variation in these well‐managed hatchery populations, which have not lost a substantial amount of genetic diversity. Neighbour‐joining tree and principal component analyses showed that genetic separation between eastern and pooled western and southern wild populations in Korea was probably influenced by restricted gene flow between regional populations due to the barrier effects of sea currents. The pooled western and southern populations are genetically close, perhaps because larval dispersal may depend on warm currents. One wild population (sample from Wando) was genetically divergent from the main distribution, but it was genetically close to hatchery populations, indicating that the genetic composition of the studied populations may be affected by hydrographic conditions and the release of fish stocks. The estimated genetic population structure and potential applications of MS markers may aid in the proper management of P. olivaceus populations.  相似文献   

20.
Enzyme gene variability in a lake-dwelling brown trout, Salmo Irulla , population was compared with its hatchery derivative by starch gel electrophoresis. A loss of genetic variability was detected in the hatchery stock founded 16 years ago in comparison to the present day wild stock; of seven originally polymorphic loci ( Aat-4, Ck-l, Gpi-3, G3p-2, Ldh-1, Mclh-2 and Pgm-l ) two, Gpi-3 and Ldh-1 , had become monomorphic. The overall hetero-zygosity was reduced by a third from 6–2% to 4–2%. A comparison between three successive hatchery cohorts indicates a distinction between stock heterogeneity. The decrease in genetic variability is probably attributable to small population size in the founding event with subsequent genetic drift and inadvertent selection during hatchery procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号