首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
云南松林的根系生物量及其分布规律的研究   总被引:12,自引:0,他引:12  
利用平均标准木机械布点法测定了云南省永仁林业局云南松不同龄组林分的根系生物量及其沿土壤剖面深度的分布规律.结果表明,林分根系总生物量随林龄而增加,幼龄林(15~17年)的根系生物量为8.50 t·hm-2,中龄林(30~32年)为11.70 t·hm-2,成熟林为(>62年) 18.91 t·hm-2.在不同龄组林分中,粗根(>10mm)生物量差异最大(1.5~12.3 t·hm-2),而中根(5~10 mm)(1.4~1.6 t·hm-2)及小根(<5 mm)(5.3~6.2 t·hm-2)的生物量差异最小.根系生物量沿土壤深度迅速减少,约93%的根系生物量集中分布在0~30 cm土层中,深土层(30~115 cm)的根系生物量仅占7%左右.  相似文献   

2.
Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top‐down changes for biogeochemical cycles via consumer‐mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom‐up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity–ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems.  相似文献   

3.
4.
Ecological baselines are disappearing and it is uncertain how marine reserves, here called fisheries closures, simulate pristine communities. We tested the influence of fisheries closure age, size and compliance on recovery of community biomass and life-history metrics towards a baseline. We used census data from 324 coral reefs, including 41 protected areas ranging between 1 and 45 years of age and 0.28 and 1430 km2, and 36 sites in a remote baseline, the Chagos Archipelago. Fish community-level life histories changed towards larger and later maturing fauna with increasing closure age, size and compliance. In high compliance closures, community biomass levelled at approximately 20 years and 10 km2 but was still only at approximately 30% of the baseline and community growth rates were projected to slowly decline for more than 100 years. In low compliance and young closures, biomass levelled at half the value and time as high compliance closures and life-history metrics were not predicted to reach the baseline. Biomass does not adequately reflect the long-time scales for full recovery of life-history characteristics, with implications for coral reef management.  相似文献   

5.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

6.
Understanding the variability of marine biodiversity is a central issue in microbiology. Current observational programs are based on in situ studies, but their implementation at the global scale is particularly challenging, owing to the ocean extent, its temporal variability and the heterogeneity of the data sources on which compilations are built. Here, we explore the possibility of identifying phytoplanktonic biodiversity hotspots from satellite. We define a Shannon entropy index based on patchiness in ocean color bio-optical anomalies. This index provides a high resolution (1 degree) global coverage. It shows a relation to temperature and mid-latitude maxima in accordance with those previously evidenced in microbiological biodiversity model and observational studies. Regional maxima are in remarkable agreement with several known biodiversity hotspots for plankton organisms and even for higher levels of the marine trophic chain, as well as with some in situ planktonic biodiversity estimates (from Atlantic Meridional Transect cruise). These results encourage to explore marine biodiversity with a coordinated effort of the molecular, ecological and remote sensing communities.  相似文献   

7.
基于遥感和地面数据的景观尺度生态系统生产力的模拟   总被引:20,自引:5,他引:20  
描述了一个反映系统碳循环和水循环的景观尺度生态系统生产力过程模型(EPPML).该模型以遥感图像作为数据源,从中获取影响植被生产力的重要变量——叶面积指数(LAI);主要对景观尺度生态系统的净初级生产力(NPP)和蒸散量的空间分布格局和时间动态进行模拟;用地理信息系统(GIS)手段对空间数据进行处理、分析和显示,从而实现将植物生理生态研究的结果从小尺度向中尺度进行拓展和转换.本研究用EPPML对1995年长白山自然保护区的植被生产力进行了模拟,结果表明,EPPML可以比较准确地模拟该保护区主要植被的NPP.NPP的模拟值年均为0.680kgC·m^-2,变幅为0.105—1.241kgC·m^-2(82.1%),其中阔叶红松林的年NPP最高(1.084kgC·m^-2).NPP年总量为1.332×10^6tC,以阔叶红松林和云冷杉林最高,分别为0.540×10^6tC和0.428×10^6tC.NPP的季节变化呈明显的单峰型,7月最大(6.13gC·m^2·d^-1).NPP在夏季积累最多(0.465kgC·m^-2),春季次之,冬季最少。  相似文献   

8.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

9.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   

10.
采用遥感手段估算海洋初级生产力研究进展   总被引:1,自引:1,他引:0  
海洋初级生产力的精确估算对渔业资源评估与管理、海洋生态系统和全球变化等研究具有重要意义.传统的现场测量与估算方法必须依赖于随船采样数据.卫星遥感具有能够获取实时的、大尺度的、动态的海洋环境参数的优点,因此卫星遥感日益成为大尺度海洋初级生产力估算的重要手段.本文从海洋水色传感器的发展历程出发,着重归纳了以叶绿素、浮游植物碳和浮游植物吸收系数为参量的海洋初级生产力的遥感估算方法,并就这3类模型的适应性和复杂程度进行了讨论.在此基础上,进一步分析评价了全球海洋初级生产力遥感估算的研究现状.鉴于当前海洋初级生产力遥感估算研究中存在的问题,今后的研究需要在4个方面进一步加强:1)对全球海洋初级生产力估算进行分区域研究;2)加深对浮游植物吸收系数的研究;3)提高海洋遥感技术水平;4)加强实地测量技术的研究.  相似文献   

11.
12.
广西黄冕林场次生常绿阔叶林生物量及净第一性生产力   总被引:9,自引:0,他引:9  
应用相对生长法和样方收获法,测定了广西黄冕林场天然次生常绿阔叶林的地上、地下生物量及林分净第一性生产力.阔叶林总生物量为99.96t·hm^-2,其中地上部分占69.41%,地下部分(根系)占30.59%.林分叶面积指数为6.50.全林净第一性生产力为24.65t·hm^-2·年^-1,其中地上部分占44.54%。根系占55.46%.  相似文献   

13.
贵州省森林生物量及其空间格局   总被引:4,自引:0,他引:4  
Tian XL  Xia J  Xia HB  Ni J 《应用生态学报》2011,22(2):287-294
利用1996—2000年贵州省森林资源连续清查5500个样地的资料,依据主要森林类型蓄积量-生物量的转换函数估算贵州省各种林地的生物量,分析其空间分布格局,以及喀斯特和非喀斯特地貌上森林生物量的差异.结果表明:贵州省林地和非林地乔灌木的总生物量为3.51×108 t,其中非喀斯特林木占82%,喀斯特林木占18%.不同林地类型的生物量存在差异,林分生物量最高,占总林地生物量的71.4%.喀斯特林地总生物量明显低于非喀斯特林地.不同优势种(组)中,杉木林总生物量最高,达5.38×107 t,硬阔类为4.99×107 t,马尾松、云南松及栎类在2.87×107~3.54×107 t,柏木和软阔叶类分别为1.52×107 t和1.43×107 t,其他优势种(组)均低于1.0×107 t.行政区划上,黔东南州的林地总生物量(9.83×107 t)和林分生物量(5.88×107 t)为遵义、铜仁和黔南地区的2~3倍,且远高于黔西南、毕节、贵阳、安顺和六盘水地区(总生物量为0.53×107~1.85×107 t,林分生物量为0.16×107~0.86×107t).高生物量(>400 t·hm-2)和中高生物量密度(100...  相似文献   

14.
The Rhinelander free-air CO(2) enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO(2)) and elevated tropospheric ozone (+O(3)). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to determine whether fine-root biomass was correlated to rates of soil respiration; and to measure rates of fine-root turnover in aspen (Populus tremuloides) forests and determine whether root turnover might be driving patterns in soil respiration. Soil respiration was measured, root biomass was determined, and estimates of root production, mortality and biomass turnover were made. Soil respiration was greatest in the +CO(2) and +CO(2) +O(3) treatments across all three plant communities. Soil respiration was correlated with increases in fine-root biomass. In the aspen community, annual fine-root production and mortality (g m(-2)) were positively affected by +O(3). After 10 yr of exposure, +CO(2) +O(3)-induced increases in belowground carbon allocation suggest that the positive effects of elevated CO(2) on belowground net primary productivity (NPP) may not be offset by negative effects of O(3). For the aspen community, fine-root biomass is actually stimulated by +O(3), and especially +CO(2) +O(3).  相似文献   

15.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.  相似文献   

16.
南黄海冬季小型底栖生物丰度和生物量   总被引:5,自引:1,他引:5  
分别于2003年1月和2004年1月在南黄海广大陆架浅海水域进行小型底栖生物调查.结果表明,两个航次的小型底栖生物平均丰度分别为 (954.20±269.47) ind·10 cm-2和(1 186.12±486.07) ind·10 cm-2;平均生物量分别为(954.38±403.93)μg·10 cm-2和(1 120.72±487.21) μg·10 cm-2.两个航次小型底栖生物丰度值、生物量和生产力均无显著变化(P>0.05).共鉴定出20个小型底栖生物类群,按丰度,自由生活海洋线虫为最优势类群,两个航次的优势度分别为87%和90%,其他优势类群依次为桡足类、多毛类和动吻类;按生物量依次为线虫34%~38%,多毛类25%~33%,介形类9%~22%,桡足类8%.96.64%的小型生物分布在0~5 cm的表层沉积物内,线虫和桡足类分布在0~2 cm的比例分别为72.48%和89.46%.小型底栖生物的生物量与沉积物砂含量(%)、粉砂含量(%)和叶绿素a含量呈显著相关.代表性站位的种类组成和多样性分析显示了沿岸、黄海冷水团和东、黄海交汇区3个不同的底栖生物群落.  相似文献   

17.
We reported here the role of amino nitrogen in the commercial production of Bacillus thuringiensis var. israelensis media design. The insect pathogen B. thuringiensis var. israelensis was cultured in different media containing varying initial levels of amino nitrogen sources obtained from three different commercial venders. The biomass, mosquito larval toxicity and spore count produced were measured during the fermentation process. The results showed that the higher level of initial amino nitrogen concentrations in the medium led to higher yield of biomass (dry weight 4.78 g l(-1)), larvicidal activity (LC(50) 18.52 ng ml(-1)) and spore count (3.24 x 10(11) CFU ml(-1)). Similarly decreasing the initial amino nitrogen concentration in the medium led to a decreased biomass (dry weight 1.64 g l(-1)), larvicidal activity (LC(50) 27.01 ng ml(-1)) and spore count (3.7 x 10(10) CFUml(-1)).  相似文献   

18.
Performance of Dunaliella salina cultures outdoors in a closed tubular photobioreactor has been assessed. Optimization of conditions involved verification of the effect of several determining factors on the yield of both biomass and carotenoids. Maximal biomass productivity (over 2g (dry weight) m(-2) d(-1) or 80 gm(-3) d(-1)) was achieved at 38 cm s(-1), flow rate; 2 x 10(9) cells l(-1), initial population density; 25 degrees C, temperature; semi-continuous regime, keeping a cell density interval between 2 x 10(9) and over 4 x 10(9) cells l(-1). Coverage of the tubular loop with a sunshade screen to avoid light-induced damage of cells was essential to maintain growth performance. The cellular beta-carotene level increased significantly during the light period, as also did that of lutein. The rise in the beta-carotene level could be accounted by the 9-cis-isomer, with all-trans-beta-carotene remaining steady during the light period. By sunset, the ratio between 9-cis- and all-trans-isomers of beta-carotene amounted to 1.5, with over 60% of total beta-carotene corresponding to the 9-cis-isomer. Removal of sunshade enhanced carotenoid accumulation by cells to reach up to 10% of dry biomass. Cultivation of Dunaliella in closed tubular photobioreactor, thus represents a suitable approach for the production of a high-quality microalgal biomass enriched in the valuable 9-cis-isomer of beta-carotene and lutein.  相似文献   

19.
长白山高山冻原植被生物量的分布规律   总被引:6,自引:1,他引:6  
魏晶  吴钢  邓红兵 《应用生态学报》2004,15(11):1999-2004
从物种生物量、优势种器官生物量和植被生物量角度,探讨了长白山高山冻原生态系统生物量的空间变化规律.结果表明,在调查的43种长白山高山冻原植物中,单物种生物量排序前5种植物分别是牛皮杜鹃(Rhododendron chrysanthum)(159.01kg·hm^-2)、笃斯越桔(Vaccinium jiliginosum var.alpinum)(137.52kg·hm^-2)、高山笃斯(Vaccinium uliginosum)(134.7kg·hm^-2)、宽叶仙女木(Dryas octopetala var.asiatica)(131.5kg·hm^-2)圆叶柳(Salix rotundifolia)(128.4kg·hm^-2).它们是长白山高山冻原生态系统的优势种.地下与地上生物量和地下与总生物量之比随海拔升高逐渐增加.植被生物量随海拔升高。总体呈逐渐减小的趋势。植被生物量与海拔高度呈显著负相关.长白山高山冻原生态系统平均生物量为2.21t·hm^-2,对调节长白山小气候、涵养水源、水土保持等生态服务功能的发挥有着重要的作用。同时对固定大气CO2起着汇的作用。  相似文献   

20.
祁连山青海云杉林生物量和碳储量空间分布特征   总被引:7,自引:0,他引:7  
根据野外调查资料、祁连山地区青海云杉林相图和气象资料,在GIS技术的支持下估算了祁连山地区青海云杉林的生物量和碳储量及其空间分布.结果表明:2008年,研究区青海云杉林平均生物量为209.24 t·hm-2,总生物量为3.4×107 t;研究区水热条件的差异使青海云杉生物量在地理空间上存在较大的差异性;经度每增加1°,青海云杉生物量增加3.12t·hm-2;纬度每增加1°,生物量减少3.8 t·hm-2;海拔每升高100 m,生物量减少0.05 t·hm-2;2008年,研究区青海云杉林碳密度在70.4~131.1 t·hm-2,平均碳密度为109.8 t·hm-2,幼龄林、中龄林、近熟林、成熟林和过熟林的平均碳密度分别为83.8、109.6、122、124.2和117.1 t·hm-2,研究区青海云杉林总碳储量为1.8×107 t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号