首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Composite free tissue transfer has an established role in head and neck oncology for the reconstruction of the bony defect following tumor ablation, and while donor-site morbidity is variably reported, there is little consensus on the most favorable donor site. The fibula and deep circumflex iliac artery have distinct advantages in terms of the volume and length of bone in mandibular reconstruction. Few studies have compared their donor-site morbidity. The aim of this study was to compare the fibula and deep circumflex iliac artery flaps using a review of the case notes and cross-sectional review of patients attending a research clinic for validated orthopedic examination and completion of health-related quality-of-life questionnaires. Between February of 1993 and May of 2001, 44 fibula free flaps and 73 deep circumflex iliac artery free flaps were performed. Ninety-nine case notes and 36 patients were available for review of donor-site morbidity. Sixteen patients with fibula flaps and 20 patients with deep circumflex iliac artery flaps took part in the clinical examination component of the study, which was composed of a clinical examination by an orthopedic surgeon using the American Orthopedic Foot and Ankle Society ankle scoring system and the Harris hip scoring system, and two patient-completed questionnaires, the University of Washington Questionnaire and the Hospital Anxiety and Depression Scale. Subjective and objective markers of morbidity related to both flaps were similar in most parameters. However, fibula flaps were associated with more problems with donor-site healing, reduced power, and sensation. Poor orthopedic scores for both flaps were associated with notably poor scores on the University of Washington Questionnaire and the Hospital Anxiety and Depression Scale. The study would suggest that both deep circumflex iliac artery and fibula donor sites result in an acceptable and comparable morbidity for most patients, but in cases in which significant donor-site morbidity is encountered, health-related quality of life is significantly compromised.  相似文献   

2.
This study examined the ways in which gait patterns and physiological rhythms such as those of muscle activity (tibialis anterior (TA) and biceps femoris (BF)) and cardiac activity are affected by the fatigue induced by prolonged free walking. Twelve normal subjects who walked for 3 h at their preferred pace were divided into two groups according to whether their mean gait cycle time (reciprocal of stride rate) during the second 90 min was higher (Group A: n=8) or lower (Group B: n=4) than that during the first 90 min. For Group A, the level of subjective fatigue during the walking task was significantly higher and the heart rate at rest was significantly lower than Group B. In Group A, prolonged walking significantly decreased the mean power frequency of the electromyography from TA, increased the variability of gait rhythm, decreased the largest Lyapunov exponent of the vertical component of back-waist acceleration, and decreased the amplitude of the vertical component of back-waist acceleration. Taking the onset timings of these changes into account, we propose that subjects who tire easily during prolonged walking first show local muscle fatigue at TA followed by instability of gait rhythm and then they slow their gait rhythm to enhance local dynamic stability. For both groups we constructed a physical fatigue index described by linear regression of gait and physiological variables. When we compared the subjective fatigue level with the fatigue level predicted using the index, we obtained a relatively high correlation coefficient for both groups (r=0.77).  相似文献   

3.
Anterolateral thigh flap donor-site complications and morbidity   总被引:7,自引:0,他引:7  
The authors examined donor-site complications and morbidity in 37 patients after reconstruction with free or pedicled anterolateral thigh flaps. Intraoperative assessment included damage to the vastus lateralis muscle and whether the main pedicle of the rectus femoris muscle had been killed. Postoperative assessment of the donor site included wound healing, range of motion, muscle strength, gait, and sensation. Patients were surveyed with a questionnaire about fatigue in their activities of daily life and the appearance of the donor site. All 32 patients who underwent primary skin closure could perform activities of daily life normally, and most (87.5 percent) reported that donor-site appearance was satisfactory. However, the severity of donor-site dysfunction was related to the degree of damage to the vastus lateralis muscle, and most patients (87.5 percent) had some loss of sensation at the anterolateral aspect of the thigh. Because of adhesions between the meshed skin graft and the underlying fascia, range of motion at the hip and knee was limited in significantly more patients who had received split-thickness skin grafts (60 percent) than patients who had undergone primary skin closure (3.1 percent). Therefore, wider flaps or flaps harvested nearer the knee may increase donor-site morbidity. The authors concluded that the incidence of long-term morbidity with the anterolateral thigh flap is low, although it is increased when the flap includes the vastus lateralis muscle or is wider and requires additional skin grafting at the donor site.  相似文献   

4.
In daily life, mobility requires walking while performing a cognitive or upper-extremity motor task. Although previous studies have evaluated the effects of dual tasks on gait performance, few studies have evaluated cortical activation and its association with gait disturbance during dual tasks. In this study, we simultaneously assessed gait performance and cerebral oxygenation in the bilateral prefrontal cortices (PFC), premotor cortices (PMC), and supplemental motor areas (SMA), using functional near-infrared spectroscopy, in 17 young adults performing dual tasks. Each participant was evaluated while performing normal-pace walking (NW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT). Our results indicated that the left PFC exhibited the strongest and most sustained activation during WCT, and that NW and WMT were associated with minor increases in oxygenation levels during their initial phases. We observed increased activation in channels in the SMA and PMC during WCT and WMT. Gait data indicated that WCT and WMT both caused reductions in walking speed, but these reductions resulted from differing alterations in gait properties. WCT was associated with significant changes in cadence, stride time, and stride length, whereas WMT was associated with reductions in stride length only. During dual-task activities, increased activation of the PMC and SMA correlated with declines in gait performance, indicating a control mechanism for maintaining gait performance during dual tasks. Thus, the regulatory effects of cortical activation on gait behavior enable a second task to be performed while walking.  相似文献   

5.
Reduced walking capacity, a hallmark of chronic heart failure (CHF), is strongly correlated with hospitalization and morbidity. The aim of this work was to perform a detailed biomechanical gait analysis to better identify mechanisms underlying reduced walking capacity in CHF. Inverse dynamic analyses were conducted in CHF patients and age- and exercise level-matched control subjects on an instrumented treadmill at self-selected treadmill walking speeds and at speeds representing +20% and –20% of the subjects’ preferred speed. Surprisingly, no difference in preferred speed was observed between groups, possibly explained by an optimization of the mechanical cost of transport in both groups (the mechanical cost to travel a given distance; J/kg/m). The majority of limb kinematics and kinetics were also similar between groups, with the exception of greater ankle dorsiflexion angles during stance in CHF. Nevertheless, over two times greater ankle plantarflexion work during stance and per distance traveled is required for a given triceps surae muscle volume in CHF patients. This, together with a greater reliance on the ankle compared to the hip to power walking in CHF patients, especially at faster speeds, may contribute to the earlier onset of fatigue in CHF patients. This observation also helps explain the high correlation between triceps surae muscle volume and exercise capacity that has previously been reported in CHF. Considering the key role played by the plantarflexors in powering walking and their association with exercise capacity, our findings strongly suggest that exercise-based rehabilitation in CHF should not omit the ankle muscle group.  相似文献   

6.
The fibula free flap became popular in orthopedic oncology for limb-sparing long bone tumor resection. It is particularly suitable for intercalary or resection arthrodesis options. In the present series, a surgical reconstruction algorithm was used, enabling each patient to receive a personalized technique. During the years 1998 to 2002, 30 patients underwent limb-sparing surgery for long bone sarcoma. There were 18 males and 12 females. Their mean age was 23 years (range, 9 to 70 years). The diagnoses were Ewing's sarcoma (11 patients), osteogenic sarcoma (eight patients), chondrosarcoma (five patients), giant cell tumor of bone (three patients), high-grade soft-tissue sarcoma (two patients), and leiomyosarcoma of bone (one patient). The majority of tumors where located in the lower extremity (23 patients), mostly in the femur (15 patients with four tumors in the proximal femoral shaft, five tumors in the distal femoral shaft, five tumors in the whole femoral shaft, and one tumor in the proximal femoral head). In seven patients, the upper extremity was involved; in six patients, the radius was involved; and in one patient, the humerus was involved. The free fibula flap was used in three types of approaches: vascularized fibula as an osseous flap only (18 patients), a combination of a vascularized fibula flap in conjunction with an allograft (Capanna's technique; 10 patients), and a free double-barreled fibula (two patients). All flaps survived. Postoperatively, all patients were monitored clinically, radiologically, and by radioisotope bone scan studies. Callus formation and union were shown 2.6 to 8 months postoperatively. Patients who underwent lower extremity reconstruction were nonweightbearing for 3 to 9 months, with a transition period in which they used a brace and gradually increased weightbearing until full weightbearing was achieved. Eight patients had 11 recipient-site complications. Two patients (6.7 percent) had hematomas, and three patients (10 percent) had infection and dehiscence of the surgical wound with bone exposure in one patient; all complications resolved with conservative treatment only. Failure of the hardware fixation system occurred in two patients, mandating surgical correction. No fibula donor-site complications were recorded. In intercalary resections, the use of the vascularized fibula flap as an isolated osseous flap might be insufficient. Different body sites have different stress loads to carry, depending on the age of the patient and on his individual physical status. To achieve initial strength in the early period, the authors combined the free fibula flap with an allograft (Capanna's method) or augmented it as a double-barreled fibula. They propose a surgical algorithm to assist the surgeon with the preferred method for reconstruction of various long bone defects in different body locations at childhood or adulthood. Long bone reconstruction using a vascularized fibula flap, alone or in combination with an allograft, autogenous bone graft, or double-barreled fibula for limb-sparing surgery, is a safe and reliable method with a predictable bony union, good functional outcome, and a low complication rate.  相似文献   

7.
This study tested whether the lower economy of walking in healthy elderly subjects is due to greater gait instability. We compared the energy cost of walking and gait instability (assessed by stride to stride changes in the stride time) in octogenarians (G80, n = 10), 65-yr-olds (G65, n = 10), and young controls (G25, n = 10) walking on a treadmill at six different speeds. The energy cost of walking was higher for G80 than for G25 across the different walking speeds (P < 0.05). Stride time variability at preferred walking speed was significantly greater in G80 (2.31 +/- 0.68%) and G65 (1.93 +/- 0.39%) compared with G25 (1.40 +/- 0.30%; P < 0.05). There was no significant correlation between gait instability and energy cost of walking at preferred walking speed. These findings demonstrated greater energy expenditure in healthy elderly subjects while walking and increased gait instability. However, no relationship was noted between these two variables. The increase in energy cost is probably multifactorial, and our results suggest that gait instability is probably not the main contributing factor in this population. We thus concluded that other mechanisms, such as the energy expenditure associated with walking movements and related to mechanical work, or neuromuscular factors, are more likely involved in the higher cost of walking in elderly people.  相似文献   

8.
Stiff-knee gait is a movement abnormality in which knee flexion during swing phase is significantly diminished. This study investigates the relationships between knee flexion velocity at toe-off, joint moments during swing phase and double support, and improvements in stiff-knee gait following rectus femoris transfer surgery in subjects with cerebral palsy. Forty subjects who underwent a rectus femoris transfer were categorized as "stiff" or "not-stiff" preoperatively based on kinematic measures of knee motion during walking. Subjects classified as stiff were further categorized as having "good" or "poor" outcomes based on whether their swing-phase knee flexion improved substantially after surgery. We hypothesized that subjects with stiff-knee gait would exhibit abnormal joint moments in swing phase and/or diminished knee flexion velocity at toe-off, and that subjects with diminished knee flexion velocity at toe-off would exhibit abnormal joint moments during double support. We further hypothesized that subjects classified as having a good outcome would exhibit postoperative improvements in these factors. Subjects classified as stiff tended to exhibit abnormally low knee flexion velocities at toe-off (p<0.001) and excessive knee extension moments during double support (p=0.001). Subjects in the good outcome group on average showed substantial improvement in these factors postoperatively. All eight subjects in this group walked with normal knee flexion velocity at toe-off postoperatively and only two walked with excessive knee extension moments in double support. By contrast, all 10 of the poor outcome subjects walked with low knee flexion velocity at toe-off postoperatively and seven walked with excessive knee extension moments in double support. Our analyses suggest that improvements in stiff-knee gait are associated with sufficient increases in knee flexion velocity at toe-off and corresponding decreases in excessive knee extension moments during double support. Therefore, while stiff-knee gait manifests during the swing phase of the gait cycle, it may be caused by abnormal muscle activity during stance.  相似文献   

9.
Crouch gait, one of the most prevalent movement abnormalities among children with cerebral palsy, is frequently treated with surgical lengthening of the hamstrings. To assist in surgical planning many clinical centers use musculoskeletal modeling to help determine if a patient’s hamstrings are shorter or lengthen more slowly than during unimpaired gait. However, some subjects with crouch gait walk slowly, and gait speed may affect peak hamstring lengths and lengthening velocities. The purpose of this study was to evaluate the effects of walking speed on hamstrings lengths and velocities in a group of unimpaired subjects over a large range of speeds and to determine if evaluating subjects with crouch gait using speed matched controls alters subjects’ characterization as having “short” or “slow” hamstrings. We examined 39 unimpaired subjects who walked at five different speeds. These subjects served as speed-matched controls for comparison to 74 subjects with cerebral palsy who walked in crouch gait. Our analysis revealed that peak hamstrings length and peak lengthening velocity in unimpaired subjects increased significantly with increasing walking speed. Fewer subjects with cerebral palsy were categorized as having hamstrings that were “short” (31/74) or “slow” (38/74) using a speed-matched control protocol compared to a non-speed-matched protocol (35/74 “short”, 47/74 “slow”). Evaluation of patients with cerebral palsy using speed-matched controls alters and may improve selection of patients for hamstrings lengthening procedures.  相似文献   

10.
In this study, the relationship between musculoskeletal architecture of the lateral gastrocnemius muscle and gait velocity in elderly individuals was investigated using ultrasonography and standardized tests of physical performance in 20 older adult males. Musculoskeletal architecture parameters included moment arm, fascicle length, pennation angle, and muscle thickness. The Six Minute Walk Test (6MIN) and Four Metre Walk Velocity Test (4METRE) were used to determine preferred and maximum gait velocity, respectively. Only weak correlations were found for all 20 subjects taken together. After subjects were separated into faster and slower subgroups by preferred velocity using cluster analysis; however, a strong correlation was found between plantarflexion moment arm and 6MIN velocity in the slower group (R(2)=0.669, p=0.004). Examination of subgroup differences revealed that the slow subgroup was significantly older than the fast subgroup (p=0.034), and had average body mass (p=0.021) and body mass index (p=0.011) that were significantly greater. The strength of the correlation between plantarflexion moment arm and 6MIN velocity found for slower subjects is much greater than those previously reported for correlations between ankle strength or power and walking velocity. Further investigation is necessary to determine if a link exists between plantarflexor moment arm and gait velocity in older and heavier adults.  相似文献   

11.
Quadriceps muscle rehabilitation following knee injury or disease is often hampered by pain, proprioception deficits or instability associated with inhibition of quadriceps activation during walking. The cross-modal plasticity of the somatosensory system with common sensory pathways including pain, pressure and vibration offers a novel opportunity to enhance quadriceps function during walking. This study explores the effectiveness of an active knee brace that used intermittent cutaneous vibration during walking to enhance the peak knee flexion moment (KFM) during early stance phase as a surrogate for net quadriceps moment (balance between knee extensor and flexor muscle moments). The stimulus was turned on prior to heel strike and turned off at mid-stance of the gait cycle. Twenty-one subjects with knee pathologies known to inhibit quadriceps function were tested walking under three conditions: control (no brace), a passive brace, and an active brace. Findings show that compared to the control, subjects wearing an active brace during gait exhibited a significant (p < 0.001) increase in peak KFM and no significant difference when wearing a passive brace (p = 0.17). Furthermore, subjects with low KFM and knee flexion angle (KFA) in control exhibited the greatest increase in KFA at loading response in the active brace condition (R = 0.47, p < 0.05). Intermittent cutaneous stimulation during gait, therefore, provides an efficient method for increasing the KFM in patients with knee pathologies. This study’s results suggest that intermittent vibration stimulus can activate the cross-modalities of the somatosensory system in a manner that gates pain stimulus and possibly restores quadriceps function in patients with knee pain.  相似文献   

12.
This study was conducted to investigate the balance strategy of healthy young adults through a gait cycle using the margin of stability (MoS). Thirty healthy young adults participated in this study. Each performed walking five times at a preferred speed and at a fast speed. The MoS was calculated over a gait cycle by defining the base of support (BoS) changes during a gait cycle. The MoS was divided into medial/lateral and anterior/posterior components (ML MoS and AP MoS). The central values and the values at 12 gait events of the MoS were compared. Positive/negative integration of ML MoS (ML MoSPOS and ML MoSNEG, respectively) and the average ML/AP MoS over a cycle (ML/AP MoSmean) were significantly lower at a fast gait than at a preferred gait. ML/AP MoS were lower at a fast speed than at the preferred speed, except for the ML MoS immediately before left heel strike (pre left HS) and right and left heel strike (HS). ML/AP MoS were significantly lower immediately before heel strike (pre-HS) than in other gait events, regardless of walking speed. It was suggested that pre-HS is the most unstable moment in both ML/AP directions and a crucial moment in control of gait stability. The results presented above might be applicable as basic data regarding dynamic stability of healthy young adults through a gait cycle for comparisons with elderly people and patients with orthopedic disorders or neurological disorders.  相似文献   

13.
Ahn J  Hogan N 《PloS one》2012,7(3):e31767
The control architecture underlying human reaching has been established, at least in broad outline. However, despite extensive research, the control architecture underlying human locomotion remains unclear. Some studies show evidence of high-level control focused on lower-limb trajectories; others suggest that nonlinear oscillators such as lower-level rhythmic central pattern generators (CPGs) play a significant role. To resolve this ambiguity, we reasoned that if a nonlinear oscillator contributes to locomotor control, human walking should exhibit dynamic entrainment to periodic mechanical perturbation; entrainment is a distinctive behavior of nonlinear oscillators. Here we present the first behavioral evidence that nonlinear neuro-mechanical oscillators contribute to the production of human walking, albeit weakly. As unimpaired human subjects walked at constant speed, we applied periodic torque pulses to the ankle at periods different from their preferred cadence. The gait period of 18 out of 19 subjects entrained to this mechanical perturbation, converging to match that of the perturbation. Significantly, entrainment occurred only if the perturbation period was close to subjects' preferred walking cadence: it exhibited a narrow basin of entrainment. Further, regardless of the phase within the walking cycle at which perturbation was initiated, subjects' gait synchronized or phase-locked with the mechanical perturbation at a phase of gait where it assisted propulsion. These results were affected neither by auditory feedback nor by a distractor task. However, the convergence to phase-locking was slow. These characteristics indicate that nonlinear neuro-mechanical oscillators make at most a modest contribution to human walking. Our results suggest that human locomotor control is not organized as in reaching to meet a predominantly kinematic specification, but is hierarchically organized with a semi-autonomous peripheral oscillator operating under episodic supervisory control.  相似文献   

14.
Humans tend to prefer walking patterns that minimize energetic cost, but must also maintain stability to avoid falling over. The relative importance of these two goals in determining the preferred gait pattern is not currently clear. We investigated the relationship between energetic cost and stability during downhill walking, a context in which gravitational energy will assist propulsion but may also reduce stability. We hypothesized that humans will not minimize energetic cost when walking downhill, but will instead prefer a gait pattern that increases stability. Simulations of a dynamic walking model were used to determine whether stable downhill gaits could be achieved using a simple control strategy. Experimentally, twelve healthy subjects walked downhill at 1.25 m/s (0, 0.05, 0.10, and 0.15 gradients). For each slope, subjects performed normal and relaxed trials, in which they were instructed to reduce muscle activity and allow gravity to maximally assist their gait. We quantified energetic cost, stride timing, and leg muscle activity. In our model simulations, increase in slope reduced the required actuation but also decreased stability. Experimental subjects behaved more like the model when using the relaxed rather than the normal walking strategy; the relaxed strategy decreased energetic cost at the steeper slopes but increased stride period variability, an indicator of instability. These results indicate that subjects do not take optimal advantage of the propulsion provided by gravity to decrease energetic cost, but instead prefer a more stable and more costly gait pattern.  相似文献   

15.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

16.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

17.
In a variety of applications, inertial sensors are used to estimate spatial parameters by double integrating over time their coordinate acceleration components. In human movement applications, the drift inherent to the accelerometer signals is often reduced by exploiting the cyclical nature of gait and under the hypothesis that the velocity of the sensor is zero at some point in stance. In this study, the validity of the latter hypothesis was investigated by determining the minimum velocity of progression of selected points of the foot and shank during the stance phase of the gait cycle while walking at three different speeds on level ground. The errors affecting the accuracy of the stride length estimation resulting from assuming a zero velocity at the beginning of the integration interval were evaluated on twenty healthy subjects. Results showed that the minimum velocity of the selected points on the foot and shank increased as gait speed increased. Whereas the average minimum velocity of the foot locations was lower than 0.011 m/s, the velocity of the shank locations were up to 0.049 m/s corresponding to a percent error of the stride length equal to 3.3%. The preferable foot locations for an inertial sensor resulted to be the calcaneus and the lateral aspect of the rearfoot. In estimating the stride length, the hypothesis that the velocity of the sensor can be set to zero sometimes during stance is acceptable only if the sensor is attached to the foot.  相似文献   

18.
Extensive composite defects of the oromandibular area are usually created after the surgical treatment of T3 and T4 cancers, requiring complex reconstructive plastic surgical procedures. The preferred treatment method for this type of defect is reconstruction with two free flaps. The use of the vascularized fibula osteoseptocutaneous flap for the bone and inner lining defect is well known and accepted. Among the flaps that can be used for the outer lining and soft-tissue reconstruction, the two most commonly used have been the forearm flap and the rectus abdominis myocutaneous flap. However, these flaps have some disadvantages that restrict their use for this purpose. The forearm flap is usually too thin to cover the fibular bone and reconstruction plate, and the rectus abdominis myocutaneous flap can cause a subclinical reduction in abdominal strength. Both radial forearm and rectus abdominis myocutaneous flaps are difficult to harvest during tumor excision. Because of these drawbacks, over the past several years the authors have preferred to use the anterolateral thigh flap for outer face, neck, and submandibular region reconstructions. From October of 1998 to June of 2000, 22 extensive composite mandibular defect reconstructions using the free anterolateral thigh flap, combined with the vascularized free fibula osteoseptocutaneous flap, were performed at the Chang Gung Memorial Hospital. Complete flap survival was 90.9 percent (40 of 44 flaps). Complete loss was seen in an anterolateral thigh flap, which was then reconstructed with a pectoralis major myocutaneous pedicled flap (2.3 percent). There were five venous problems: three in osteoseptocutaneous free fibula flaps, the other two in anterolateral thigh flaps; all were revised immediately. However, the skin islands of two osteoseptocutaneous free fibula flaps and one anterolateral thigh flap developed partial necrosis (6.8 percent). The other complications were compartment syndrome in the leg in one patient, external carotid artery rupture in one patient, three donor-site infections in two patients, three neck wound infections, and one myocardial insufficiency; all were treated properly. Thirteen patients underwent revision procedures 6 months after the first operation. These procedures included debulking of the flap or revision of the mouth angle or both. Trismus or intraoral contraction was noted in none of these patients. In conclusion, the free anterolateral thigh flap combined with the vascularized fibula osteoseptocutaneous flap seems to be a good choice in the reconstruction of the extensive composite defects of the oromandibular region aesthetically and functionally.  相似文献   

19.
ABSTRACT

Gait is one of the most basic movements, and walking activity accomplished in dual task conditions realistically represents daily life mobility. Much is known about diurnal variations of gait components such as muscle power, postural control, and attention. However, paradoxically only little is known about gait itself. The aim of this study was to analyze whether gait parameters show time-of-day fluctuation in simple and dual task conditions. Sixteen young subjects performed sessions at five specific hours (06:00, 10:00, 14:00, 18:00 and 22:00 h), performing a single (walking or counting) and a dual (walking and counting) task. When performing gait in dual task conditions, an additional cognitive task had to be carried out. More precisely, the participants had to count backwards from a two-digit random number by increments of three while walking. Spatio-temporal gait parameters and counting performance data were recorded for analysis. Walking speed significantly decreased, while stride length variability increased when the task condition switched from single to dual. In the single-task condition, diurnal variations were observed in both walking speed and counting speed. Walking speed was higher in the afternoon and in the evening (14:00 and 22:00 h) and lower in the morning (10:00 h). Counting speed was maximum at 10:00 and 14:00 h and minimum at 18:00 h. Nevertheless, no significant diurnal fluctuation was substanytiated in the dual task condition. These results confirm the existing literature about changes in gait between single and dual task conditions. A diurnal pattern of single-task gait could also be highlighted. Moreover, this study suggests that diurnal variations faded in complex dual task gait, when the cognitive load nearly reached its maximum. These findings might be used to reduce the risk for falls, especially of the elderly.  相似文献   

20.
Patients with multiple sclerosis (MS) experience abnormal gait patterns and reduced physical activity. The purpose of this study was to determine if an elliptical exercise intervention for patients with MS would change joint kinetics during gait toward healthy control values. Gait analysis was performed on patients with MS (n = 24) before and after completion of 15 sessions of supervised exercise. Joint torques and powers were calculated, while also using walking velocity as a covariate, to determine the effects of elliptical exercise on lower extremity joint kinetics during gait. Results show that elliptical exercise significantly altered joint torques at the ankle and hip and joint powers at the ankle during stance. The change in joint power at the ankle indicates that, after training, patients with MS employed a walking strategy that is more similar to that of healthy young adults. These results support the use of elliptical exercise as a gait training tool for patients with MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号