首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protein acting as inhibitor of cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.1.) activity was found in the ox retina tissue. An inhibitor from one tissue (ox retina) effectively cross-inhibited a phosphodiesterase from another tissue (rat brain), indicating a lack of tissue specificity. Kinetic analysis showed that inhibition was independent of the time of preliminary incubation of the inhibitor with enzyme but dependent on its concentration in the reaction mixture. An inhibitor decreased the V of the enzyme and had no effect on its Km for cyclic adenosine-3':5'-monophosphate. The inhibitory effect was more pronounced with cyclic adenosine-3':5'-monophosphate than with cyclic guanosine-3':5'-monophosphate used as substrates of the reaction. The extractable form of the phosphodiesterase of the retina rod outer segments was much more sensitive to the inhibitory action than the membrane-bound one. The binding of labeled cyclic adenosine-3':5'-monophosphate to the inhibitory protein was shown not to occur. The inhibitor was sensitive to trypsin treatment, indicating that it was a proten attempt was mode to purify the inhibitory factor. Gel filtration indicated that the inhibitor had a molecular weight of 38 000.  相似文献   

2.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

3.
A study was made of the effect of cyclic adenosine-3',5'-monophosphate (cAMP) dibutyril-cAMP and theophylline (phosphoesterase inhibitor - an enzyme transforming adenosine-3'-5'-monophosphate into adenosine-5'-monophosphate) on the intensity of proliferation (by the increase in the content of nucleic acids in the culture), DNA synthesis (by the H3-thymidine incorporation) and on the transplantation properties (the capacity to repopulation in the animal organism) of leukemic cells of the L-5178 strain. It was found that cAMP in a concentration of 0.8 mM considerably inhibited the H3-thymidine incorporation, retarded the proliferation and decreased the transplantation capacity of leukemic cells. Theophylline and dibutyril-cAMP had a comparatively low inhibitory capacity on the DNA synthesis, proliferative activity and the transplantation properties of the cells.  相似文献   

4.
1. Cyclic adenosine 3',5'-monophosphate and N-6-2'-O-dibutyryl cyclic adenosine 3',5'-monophosphate decrease the initial entry rate and the steady-state uptake of p-aminohippurate and uric acid by rabbit kidney cortex slices. 2. N-6-2'-O-Dibutyryl adenosine 3'-5'-monophosphate inhibits the tubular transport of p-aminohippurate competitively. 3. Isoproterenol, known to increase cyclic nucleotide concentration of the cortical tubules by activation of adenyl cyclase, decreases p-aminohippurate transport. Antidiuretic hormone which is known to stimulate only medullary adenyl cyclase has no effect on p-amino-hippurate uptake by cortical slices. 4. Theophylline, which inhibits cyclic nucleotide phosphodiesterase and, therefore, enhances the cellular accumulation of endogenous cyclic nucleotide, depresses p-aminohippurate transport.  相似文献   

5.
A study was made of seven radioprotective agents of different chemical classes (sulfur-containing, indolylalkylamines, and imidazol, urea and pyridasine derivatives) and also of their six structural analogs without radioprotective properties on the content of cyclic nucleotides in blood plasma and on the postirradiation survival of mice. There was a correlation between the ability of the preparations to increase the level of cyclic adenosine-3',5'-monophosphate and their radioprotective properties; with guanosine-3',5'-monophosphate, this correlation was absent.  相似文献   

6.
The araCi protein differs in stability from araC+ protein and alters the concentration of cyclic adenosine-3', 5'-monophosphate required to maximally stimulate L-arabinose isomerase synthesis in an in vitro protein-synthesizing system.  相似文献   

7.
The adenyl cyclase and phosphodiesterase metabolizing adenosine 3',5'-cyclic monophosphate (cyclic AMP) were detected in mycelia of strains of Coprinus macrorhizus which form fruiting bodies, but not in those of strains which do not form fruiting bodies. The adenyl cyclase synthesized cyclic AMP from adenosine triphosphate. The phosphodiesterase degr[UNK]ded cyclic AMP to adenosine-5'-monophosphate and was inhibited by adenosine-3'-monophosphate, theophylline, and caffeine. The strains which form fruiting bodies incorporated and metabolized cyclic AMP, but strains which do not form fruiting bodies did not. The possible participation of cyclic AMP in the induction of fruiting bodies is discussed.  相似文献   

8.
A synthesis of previously unknown 8-substituted derivatives and alkyl esters of cyclic adenosine-3',5'-monophosphate, containing reactive groups, was carried out. The interaction of the compounds obtained with a homogeneous preparation of protein kinase from pig brain was studied. It was found that all compounds, with the exception of neutral esters of 3',5'-AMP, activate the enzyme and competitively inhibit 3H-labelled 3',5'-cAMP binding by the regulatory subunit of protein kinase. The activating effect and affinity of 8-(beta-aminoethylamino)-3',5'-cAMP for protein kinase was 10 times lower than that for 3',5'-cAMP and other 8-substituted derivatives of the cyclic nucleotide. It was found that 8-(N-chloroacetylaminoethylamino)-3',5'-cAMP interaction with the enzyme is of irreversible type, which suggest covalent blocking of the nucleophilic group of the 3',5'-cAMP binding site of protein kinase. The data obtained indicate that the 3',5'-cAMP molecule is bound to the regulatory site of protein kinase in the syn-conformation. The previously made assumption on the crucial importance of the negative charge in the 3',5'-cyclophosphate system for the interaction of cyclic AMP with the regulatory subunit of protein kinase has been thus confirmed.  相似文献   

9.
10.
The intrasynaptosomal free calcium concentration ([Ca2+]i) was measured in quin2-loaded synaptosomes prepared from rat cerebral cortex. Membrane-permeant cyclic adenosine-3',5'-monophosphate (cAMP) analogues [8-bromo-cyclic adenosine-3',5'-monophosphate (8-Br-cAMP) and dibutyryl-cyclic adenosine-3',5'-monophosphate (db-cAMP)] increased [Ca2+]i in a dose-dependent manner; The maximal increases were approximately 50% for 8-Br-cAMP and 35% for db-cAMP and occurred at approximately 10 microM with both analogues. Clonidine (1 microM) alone reduced [Ca2+]i by 26.5%; db-cAMP and 8-Br-cAMP attenuated this reduction to 14.2 and 8.2%, respectively. In contrast, the reduction (19.9%) in [Ca2+]i induced by the preferential kappa-opiate agonist dynorphin A(1-13) was not attenuated by the cAMP analogues; in fact, db-cAMP and 8-Br-cAMP potentiated the effect of dynorphin A(1-13) (1 microM), producing decreases in [Ca2+]i of 33.6 and 29.6%, respectively. We conclude that although alpha 2-adrenergic and kappa-opiate receptors both reduce [Ca2+]i, the alpha 2-adrenoceptor-mediated response and the kappa-opiate receptor-mediated response involve different effector mechanisms. It appears that presynaptic alpha 2-adrenoceptor agonist effects are linked to reductions in adenylate cyclase activity and cAMP production and a resultant increase in Ca2+ sequestration, Ca2+-channel blockade, or both. On the other hand, the kappa-opiate-mediated effects possibly involve an increase in cAMP production and a blockade of Ca2+ entry.  相似文献   

11.
Addition of insulin to cultured mouse plasma tumor cells (MPC-11) increases the entry of tritiated cyclic adenosine 3',5'-monophosphate (3H-cAMP). No increase of entry of N6-O2-dibutyryl adenosine 3',5' cyclic monophosphate (DBcAMP), 5' adenosine monophosphate (5' AMP) or adenosine was noted in the presence of insulin. The stimulation of cAMP transport by insulin was concentration dependent and inactivated insulin had no effect on nucleotide transport. Intracellular radioactivity after transport of cAMP was largely 5'AMP, while most of the extracellular radioactivity remained as cAMP after incubation.  相似文献   

12.
Adenosine-3',5'-cyclic monophosphate was shown to be the compound found in Escherichia coli responsible for the attraction of the amoebae of the cellular slime mold Dictyostelium discoideum. A number of other nucleotides were tested and the following were active: tubercidin-3',5'-cyclic monophosphate, N(6)-2'-O-dibutyryl-adenosine-3',5'-cyclic monophosphate, 5'-methylene adenosine-3',5'-cyclic monophosphonate, guanosine-3',5'-cyclic monophosphate, uridine-3',5'-cyclic monophosphate, cytidine-3',5'-cyclic monophosphate, inosine-3',5'-cyclic monophosphate, and thymidine-3',5'-cyclic monophosphate. They were less active than adenosine-3',5'-cyclic monophosphate. It is suggested that cyclic adenosine monophosphate secreted by the bacteria is used by the amoebae as a means of sensing and orienting towards food.  相似文献   

13.
During prolonged sepsis, impairment of glucose supply by the liver leads to hypoglycemia. Our aim was to investigate whether proinflammatory cytokine interleukin-6, a major mediator of the hepatic acute phase reaction, could contribute to this impairment by inhibiting hepatic glucose production stimulated by glucagon or isoproterenol in rat hepatocytes. Interleukin-6 inhibited the stimulation of glucose formation from glycogen by glucagon but not by isoproterenol in cultured rat hepatocytes. This was confirmed in the perfused rat liver. In cultured hepatocytes, the increase in cyclic adenosine-3',5'-monophosphate formation by glucagon was inhibited by interleukin-6, which was probably due to attenuation of glucagon binding to the glucagon receptor. The increase in cyclic adenosine-3',5'-monophosphate stimulated by isoproterenol was not affected by interleukin-6. However, the cytokine inhibited both expression of the key gluconeogenic control enzyme, phosphoenolpyruvate carboxykinase, stimulated by glucagon and isoproterenol. Thus, while increased glucose demand during the acute-phase reaction might initially be accomplished by catecholamine-mediated stimulation of glucose formation from glycogen, inhibition of gluconeogenesis by interleukin-6 may contribute to the impairment of glucose homeostasis during the prolonged acute phase reaction.  相似文献   

14.
Substances which are effective in inducing fruiting bodies in monokaryotic mycelia of the fis(+) strain of Coprinus macrorhizus were purified and characterized. The active components of fruiting-inducing substances were identified as adenosine-3'-monophosphate, adenosine 3',5'-cyclic monophosphate (cyclic AMP), and a protein which is bound with the cyclic AMP. Cyclic AMP was synthesized from adenine within mycelia of the mutant strains which form monokaryotic fruiting bodies without the addition of fruiting-inducing substances, but not in those of the strains which do not form monokaryotic fruiting bodies. The proteins which bind with cyclic AMP were detected in crude extracts of mycelia of those strains which form monokaryotic fruiting bodies and of the dikaryon, but not in those of the strains which do not form monokaryotic fruiting bodies.  相似文献   

15.
Recent studies on the mechanisms of cell regulation have demonstrated that the reactions occurring with participation of secondary messengers, i.e., cyclic adenosine-3',5'-monophosphate (cAMP), Ca2+, 2',5'-oligoadenylate (oligoA), etc., are closely interrelated and the secondary messengers involved therein can thus be regarded as components of the integral regulatory system of the cell. The interaction between these components occurs via at least two pathways. Firstly, some reactions, that are vital for the cell, are under a simultaneous control of several messengers. Secondly, any changes in the intracellular level of one of the messengers inevitably affects the concentrations of other messengers.  相似文献   

16.
During electric stimulation of the aortal reflexogenic zone in rabbits, administration of L-DOPA prevented the reduction of the level of cyclic adenosine-3',5'-monophosphate (cAMP) in the cardiac muscle and blood plasma. This is likely to be related to L-DOPA ability to participate in the biosynthesis of endogenous catecholamines, and thus to stimulate the synthesis of cAMP.  相似文献   

17.
Experiments using a phosphodiesterase-minus mutant of Dictyostelium discoideum indicate that ligand-induced loss of cell surface cyclic adenosine 3':5'-monophosphate binding sites (down regulation) can be evoked with concentrations of cyclic adenosine 3':5'-monophosphate as low as 10(-8) M. The loss of receptor sites is observed after 5 min of cell preincubation with cyclic adenosine 3':5'-monophosphate and can be as extensive as 75 to 80%. This decrease in binding sites is correlated with the appearance of a slowly dissociating cyclic adenosine 3':5'-monophosphate binding component. Radioactive cyclic adenosine 3':5'-monophosphate bound to this form of receptor cannot be competed for by nonradioactive cyclic adenosine 3':5'-monophosphate or adenosine 5'-monophosphate and is not accessible to hydrolysis by cyclic adenosine 3':5'-monophosphate phosphodiesterase. The extent of appearance of this binding component is dependent upon the concentration of cyclic adenosine 3':5'-monophosphate used to elicit the down regulation response and the temperature of the incubation medium.  相似文献   

18.
The present study was undertaken to determine whether human atrial natriuretic factor (hANF) produces guanosine-3', 5'-monophosphate (cGMP) and alters arginine vasopressin (AVP)- and forskolin (F)- induced adenosine-3', 5'-monophosphate (cAMP) production in the cultured rat renal papillary collecting tubule cells. hANF increased cellular cGMP levels in a dose dependent manner. AVP and F, however, did not affect cGMP production. hANF significantly inhibited AVP- and F-stimulated cAMP levels, but hANF by itself did not affect cellular cAMP production. Since F activates adenylate cyclase at a step of catalytic unit and the cellular action of AVP to activate adenylate cyclase is mediated through receptor-catalytic units, the present results indicate that hANF may directly inhibit the AVP- and F-stimulated adenylate cyclase in renal papillary collecting tubules.  相似文献   

19.
The relative efficiency of 1,N6-etheno-2aza-adenosine 3', 5'-monophosphate (cyclic 2-aza-epsilon AMP), 1,N6-etenoadenosine 3', 5'-monophosphate (cyclic epsilon AMP) and cyclic AMP in activation of membrane protein kinase and binding to membrane was examined using isolated membranes from human erythrocytes. Cyclic 2-aza-epsilon AMP was 81% as active as cyclic AMP in erythrocyte membrane binding and activation of membrane protein kinase. On the other hand, cyclic epsilon AMP was 37% as active toward membrane protein kinase and 29% toward membrane cyclic AMP binding. Since we have previously shown that the fluorescence of cyclic 2-aza-epsilon AMP is highly sensitive to the polarity of solvents, the high efficiency of cyclic 2-aza-epsilon AMP to substitute for cyclic amp suggests that it may be a suitable microenvironmental fluorescent probe for cyclic AMP binding sites.  相似文献   

20.
In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号