首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coordinated growth and development of synapses is critical for all aspects of neural circuit function and mutations that disrupt these processes can result in various neurological defects. Several anterograde and retrograde signaling pathways, including the canonical Bone Morphogenic Protein (BMP) pathway, regulate synaptic development in vertebrates and invertebrates. At the Drosophila larval neuromuscular junction (NMJ), the retrograde BMP pathway is a part of the machinery that controls NMJ expansion concurrent with larval growth. We sought to determine whether the conserved Hippo pathway, critical for proportional growth in other tissues, also functions in NMJ development. We found that neuronal loss of the serine‐threonine protein kinase Tao, a regulator of the Hippo signaling pathway, results in supernumerary boutons which contain a normal density of active zones. Tao is also required for proper synaptic function, as reduction of Tao results in NMJs with decreased evoked excitatory junctional potentials. Surprisingly, Tao function in NMJ growth is independent of the Hippo pathway. Instead, our experiments suggest that Tao negatively regulates BMP signaling as reduction of Tao leads to an increase in pMad levels in motor neuron nuclei and an increase in BMP target gene expression. Taken together, these results support a role for Tao as a novel inhibitor of BMP signaling in motor neurons during synaptic development and function.  相似文献   

2.
Members of the TGF-β superfamily play numerous roles in nervous system development and function. In Drosophila, retrograde BMP signaling at the neuromuscular junction (NMJ) is required presynaptically for proper synapse growth and neurotransmitter release. In this study, we analyzed whether the Activin branch of the TGF-β superfamily also contributes to NMJ development and function. We find that elimination of the Activin/TGF-β type I receptor babo, or its downstream signal transducer smox, does not affect presynaptic NMJ growth or evoked excitatory junctional potentials (EJPs), but instead results in a number of postsynaptic defects including depolarized membrane potential, small size and frequency of miniature excitatory junction potentials (mEJPs), and decreased synaptic densities of the glutamate receptors GluRIIA and B. The majority of the defective smox synaptic phenotypes were rescued by muscle-specific expression of a smox transgene. Furthermore, a mutation in actβ, an Activin-like ligand that is strongly expressed in motor neurons, phenocopies babo and smox loss-of-function alleles. Our results demonstrate that anterograde Activin/TGF-β signaling at the Drosophila NMJ is crucial for achieving normal abundance and localization of several important postsynaptic signaling molecules and for regulating postsynaptic membrane physiology. Together with the well-established presynaptic role of the retrograde BMP signaling, our findings indicate that the two branches of the TGF-β superfamily are differentially deployed on each side of the Drosophila NMJ synapse to regulate distinct aspects of its development and function.  相似文献   

3.
4.
Synaptic connections must be precisely controlled to ensure proper neural circuit formation. In Drosophila melanogaster, bone morphogenetic protein (BMP) promotes growth of the neuromuscular junction (NMJ) by binding and activating the BMP ligand receptors wishful thinking (Wit) and thickveins (Tkv) expressed in motor neurons. We report here that an evolutionally conserved, previously uncharacterized member of the S6 kinase (S6K) family S6K like (S6KL) acts as a negative regulator of BMP signaling. S6KL null mutants were viable and fertile but exhibited more satellite boutons, fewer and larger synaptic vesicles, larger spontaneous miniature excitatory junctional potential (mEJP) amplitudes, and reduced synaptic endocytosis at the NMJ terminals. Reducing the gene dose by half of tkv in S6KL mutant background reversed the NMJ overgrowth phenotype. The NMJ phenotypes of S6KL mutants were accompanied by an elevated level of Tkv protein and phosphorylated Mad, an effector of the BMP signaling pathway, in the nervous system. In addition, Tkv physically interacted with S6KL in cultured S2 cells. Furthermore, knockdown of S6KL enhanced Tkv expression, while S6KL overexpression downregulated Tkv in cultured S2 cells. This latter effect was blocked by the proteasome inhibitor MG132. Our results together demonstrate for the first time that S6KL regulates synaptic development and function by facilitating proteasomal degradation of the BMP receptor Tkv.  相似文献   

5.
6.
Retrograde BMP signaling in neurons plays conserved roles in synaptic efficacy and subtype-specific gene expression. However, a role for retrograde BMP signaling in the behavioral output of neuronal networks has not been established. Insect development proceeds through a series of stages punctuated by ecdysis, a complex patterned behavior coordinated by a dedicated neuronal network. In Drosophila, larval ecdysis sheds the old cuticle between larval stages, and pupal ecdysis everts the head and appendages to their adult external position during metamorphosis. Here, we found that mutants of the type II BMP receptor wit exhibited a defect in the timing of larval ecdysis and in the completion of pupal ecdysis. These phenotypes largely recapitulate those previously observed upon ablation of CCAP neurons, an integral subset of the ecdysis neuronal network. Here, we establish that retrograde BMP signaling in only the efferent subset of CCAP neurons (CCAP-ENs) is required to cell-autonomously upregulate expression of the peptide hormones CCAP, Mip and Bursicon β. In wit mutants, restoration of wit exclusively in CCAP neurons significantly rescued peptide hormone expression and ecdysis phenotypes. Moreover, combinatorial restoration of peptide hormone expression in CCAP neurons in wit mutants also significantly rescued wit ecdysis phenotypes. Collectively, our data demonstrate a novel role for retrograde BMP signaling in maintaining the behavioral output of a neuronal network and uncover the underlying cellular and gene regulatory substrates.  相似文献   

7.
Bone morphogenetic protein (BMP) retrograde signaling is crucial for neuronal development and synaptic plasticity. However, how the BMP effector phospho-Mother against decapentaplegic (pMad) is processed following receptor activation remains poorly understood. Here we show that Drosophila Epsin1/Liquid facets (Lqf) positively regulates synaptic growth through post-endocytotic processing of pMad signaling complex. Lqf and the BMP receptor Wishful thinking (Wit) interact genetically and biochemically. lqf loss of function (LOF) reduces bouton number whereas overexpression of lqf stimulates bouton growth. Lqf-stimulated synaptic overgrowth is suppressed by genetic reduction of wit. Further, synaptic pMad fails to accumulate inside the motoneuron nuclei in lqf mutants and lqf suppresses synaptic overgrowth in spinster (spin) mutants with enhanced BMP signaling by reducing accumulation of nuclear pMad. Interestingly, lqf mutations reduce nuclear pMad levels without causing an apparent blockage of axonal transport itself. Finally, overexpression of Lqf significantly increases the number of multivesicular bodies (MVBs) in the synapse whereas lqf LOF reduces MVB formation, indicating that Lqf may function in signaling endosome recycling or maturation. Based on these observations, we propose that Lqf plays a novel endosomal role to ensure efficient retrograde transport of BMP signaling endosomes into motoneuron nuclei.  相似文献   

8.
9.
10.
11.
The synaptic growth of neurons during the development and adult life of an animal is a very dynamic and highly regulated process. During larval development in Drosophila new boutons and branches are added at the glutamatergic neuromuscular junction (NMJ) until a balance between neuronal activity and morphological structures is reached. Analysis of several Drosophila mutants suggest that bouton number and size might be regulated by separate signaling processes [Budnik, V., 1996. Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr. Opin. Neurobiol. 6, 858-867.]. Here we show a new role for Hangover as a negative regulator of bouton number at the NMJ. The hangover gene (hang) encodes a nuclear zinc finger protein. It has a function in neuronal plasticity mediating ethanol tolerance, a behavior that develops upon previous experience with ethanol. hangAE10 mutants have more boutons and an extended synaptic span. Moreover, Hang expression in the motoneuron is required for the regulation of bouton number and the overall length of muscle innervation. However, the increase in bouton number does not correlate with a change in synaptic transmission, suggesting a mechanism independent from neuronal activity leads to the surplus of synaptic boutons. In contrast, we find that expression levels of the cell adhesion molecule Fasciclin II (FASII) are reduced in the hang mutant. This finding suggests that the increase in bouton number in hang mutants is caused by a reduction in FASII expression, thus, linking the regulation of nuclear gene expression with the addition of boutons at the NMJ regulated by cell adhesion molecules.  相似文献   

12.
BMP signaling responses are refined by distinct secreted and intracellular antagonists in different cellular and temporal contexts. Here, we show that the nuclear LEM-domain protein MAN1 is a tissue-specific antagonist of BMP signaling in Drosophila. MAN1 contains two potential Mad-binding sites. We generated MAN1ΔC mutants, harbouring a MAN1 protein that lacks part of the C-terminus including the RNA recognition motif, a putative Mad-binding domain. MAN1ΔC mutants show wing crossvein (CV) patterning defects but no detectable alterations in nuclear morphology. MAN1ΔC pupal wings display expanded phospho-Mad (pMad) accumulation and ectopic expression of the BMP-responsive gene crossveinless-2 (cv-2) indicating that MAN1 restricts BMP signaling. Conversely, MAN1 overexpression in wing imaginal discs inhibited crossvein development and BMP signaling responses. MAN1 is expressed at high levels in pupal wing veins and can be activated in intervein regions by ectopic BMP signaling. The specific upregulation of MAN1 in pupal wing veins may thus represent a negative feedback circuit that limits BMP signaling during CV formation. MAN1ΔC flies also show reduced locomotor activity, and electrophysiology recordings in MAN1ΔC larvae uncover a new presynaptic role of MAN1 at the neuromuscular junction (NMJ). Genetic interaction experiments suggest that MAN1 is a BMP signaling antagonist both at the NMJ and during CV formation.  相似文献   

13.
Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.  相似文献   

14.
15.
The Drosophila neuromuscular junction (NMJ) is an established model system used for the study of synaptic development and plasticity. The widespread use of the Drosophila motor system is due to its high accessibility. It can be analyzed with single-cell resolution. There are 30 muscles per hemisegment whose arrangement within the peripheral body wall are known. A total of 31 motor neurons attach to these muscles in a pattern that has high fidelity. Using molecular biology and genetics, one can create transgenic animals or mutants. Then, one can study the developmental consequences on the morphology and function of the NMJ. Immunohistochemistry can be used to clearly image the components of the NMJ. In this article, we demonstrate how to use antibody staining to visualize the Drosophila larval NMJ.  相似文献   

16.
Bone morphogenetic proteins (BMPs), members of the transforming growth factor-beta (TGF-β) superfamily, have been shown to play important roles in the nervous system, including neuronal survival and synaptogenesis. However, the physiological functions of BMP signaling in the mammalian neuromuscular system are not well understood. In this study, we found that proteins of the type II bone morphogenetic receptors (BMPRII) were detected at the neuromuscular junction (NMJ), and one of its ligands, BMP4, was expressed by Schwann cells and skeletal muscle fibers. In double-ligated nerves, BMP4 proteins accumulated at the proximal and distal portions of the axons, suggesting that Schwann cell- and muscle fiber-derived BMP4 proteins were anterogradely and retrogradely transported by motor neurons. Furthermore, BMP4 mRNA was down-regulated in nerves but up-regulated in skeletal muscles following nerve ligation. The motor neuron-muscle interactions were also demonstrated using differentiated C2C12 muscle cells and NG108-15 neurons in vitro. BMP4 mRNA and immunoreactivity were significantly up-regulated in differentiated C2C12 muscle cells when the motor neuron-derived factor, agrin, was present in the culture. Peripherally-derived BMP4, on the other hand, promotes embryonic motor neuron survival and protects NG108-15 neurons from glutamate-induced excitotoxicity. Together, these data suggest that BMP4 is a peripherally-derived factor that may regulate the survival of motor neurons.  相似文献   

17.
Retrograde growth factors regulating synaptic plasticity at the neuromuscular junction (NMJ) in Drosophila have long been predicted but their discovery has been scarce. In vertebrates, such retrograde factors produced by the muscle include GDNF and the neurotrophins (NT: NGF, BDNF, NT3 and NT4). NT superfamily members have been identified throughout the invertebrates, but so far no functional in vivo analysis has been carried out at the NMJ in invertebrates. The NT family of proteins in Drosophila is formed of DNT1, DNT2 and Spätzle (Spz), with sequence, structural and functional conservation relative to mammalian NTs. Here, we investigate the functions of Drosophila NTs (DNTs) at the larval NMJ. All three DNTs are expressed in larval body wall muscles, targets for motor-neurons. Over-expression of DNTs in neurons, or the activated form of the Spz receptor, Toll 10b, in neurons only, rescued the semi-lethality of spz 2 and DNT1 41 , DNT2 e03444 double mutants, indicating retrograde functions in neurons. In spz 2 mutants, DNT1 41 , DNT2 e03444 double mutants, and upon over-expression of the DNTs, NMJ size and bouton number increased. Boutons were morphologically abnormal. Mutations in spz and DNT1,DNT2 resulted in decreased number of active zones per bouton and decreased active zone density per terminal. Alterations in DNT function induced ghost boutons and synaptic debris. Evoked junction potentials were normal in spz 2 mutants and DNT1 41 , DNT2 e03444 double mutants, but frequency and amplitude of spontaneous events were reduced in spz 2 mutants suggesting defective neurotransmission. Our data indicate that DNTs are produced in muscle and are required in neurons for synaptogenesis. Most likely alterations in DNT function and synapse formation induce NMJ plasticity leading to homeostatic adjustments that increase terminal size restoring overall synaptic transmission. Data suggest that Spz functions with neuron-type specificity at the muscle 4 NMJ, and DNT1 and DNT2 function together at the muscles 6,7 NMJ.  相似文献   

18.
A network of molecular interactions is required in the developing vertebrate hindbrain for the formation and anterior-posterior patterning of the rhombomeres. FGF signaling is required in this network to upregulate the expression of the Krox20 and Kreisler segmentation genes, but little is known of how FGF gene expression is regulated in the hindbrain. We show that the dynamic expression of FGF3 in chick hindbrain segments and boundaries is similar to that of the BMP antagonist, follistatin. Consistent with a regulatory relationship between BMP signaling and FGF3 expression, we find that an increase in BMP activity due to blocking of follistatin translation by morpholino antisense oligonucleotides or overexpression of BMP results in strong inhibition of FGF3 expression. Conversely, addition of follistatin leads to an increase in the level of FGF3 expression. Furthermore, the segmental inhibition of BMP activity by follistatin is required for the expression of Krox20, Hoxb1 and EphA4 in the hindbrain. In addition, we show that the maintenance of FGF3 gene expression requires FGF activity, suggestive of an autoregulatory loop. These results reveal an antagonistic relationship between BMP activity and FGF3 expression that is required for correct segmental gene expression in the chick hindbrain, in which follistatin enables FGF3 expression by inhibiting BMP activity.  相似文献   

19.
20.
Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps–HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps–HOPS complex function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号