首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutritional control of sexuality in Chlamydomonas reinhardi   总被引:27,自引:0,他引:27  
1. Cells of Chlamydomonas reinhardi grown in the light or dark on standard medium require an additional exposure to light in the absence of a nitrogen source, in order to become sexually active. As the culture ages, the light requirement decreases. 2. This light requirement is a function of nitrogen depletion, as shown by the observation that cells from cultures grown to maturity on a low nitrogen medium in the light or in the dark, have no additional light requirement for zygote formation. The withholding of no other component of the medium has this effect. 3. In cells requiring light for zygote formation, the light can be supplied before the mating types are mixed, indicating that light is required, not for mating per se, but for the conversion of vegetative cells to gametes. 4. Gametes can be dedifferentiated to the vegetative state by any nitrogen compound which the cells can use for growth; and by further exposure to light in the absence of a nitrogen source, these vegetative cells can again become gametic. 5. Cells grown at different nitrogen levels become gametic at widely different cell concentrations of nitrogen and carbon and C/N ratios. 6. It is postulated that the role of light in gametic differentiation is indirect, providing by photosynthesis, energy for the mating process and carbohydrates to tie up excess nitrogenous reserves; and that the concentration of some particular nitrogen fraction or compound determines whether or not gametic differentiation is initiated.  相似文献   

2.
Withdrawal of a utilizable nitrogen source during mid G1 of the cell cycle induces gametic differentiation in synchronously grown vegetative cultures of Chlamydomonas reinhardi. Cell division accompanies gametic differentiation in such cultures, and the ability of mid G1 vegetative cells to form gametes is matched by their ability to undergo a round of cell division after nitrogen withdrawal. Synchronously grown cultures require up to 19 hr in nitrogen-free medium to complete a round of division and to form mating-competent cells. Asynchronously grown liquid cultures require less time after nitrogen withdrawal (generally 5–8 hr) to achieve mating competency. In these cultures cell division did not necessarily accompany gametic differentiation since gametic differentiation took place in induced cultures at high cell concentrations which prevented cell division. Maximum mating competency was achieved in less than 2 hr after induction of vegetative cells grown on agar plates. Little cell division was observed during that short induction interval. The relationship between the attainment of mating competency (gametogenesis) and other physiological events resulting from nitrogen withdrawal is discussed.  相似文献   

3.
Antisera raised against vegetative and gametic flagella of Chlamydomonas reinhardi have been used to probe dynamic properties of the flagellar membranes. The antisera, which agglutinate cells via their flagella, associate with antigens that are present on both vegetative and gametic membranes and on membranes of both mating types (mt+ and mt-). Gametic cells respond to antibody presentation very differently from vegetative cells, mobilizing even high concentrations of antibody towards the flagellar tips; the possibility is discussed that such "tipping" ability reflects a differentiated gametic property relevant to sexual agglutinability. Gametic cells also respond to antibody agglutination by activating their mating structures, the mt+ reaction involving a rapid polymerization of microfilaments. Several impotent mt+ mutant strains that fail to agglutinate sexually are also activated by the antisera and procede to form zygotes with normal mt- gametes. Fusion does not occur between activated cells of like mating type. Monovalent (Fab) preparations of the antibody fail to activate mt+ gametes, suggesting that the cross-linking properties of the antisera are essential for their ability to mimic, or bypass, sexual agglutination.  相似文献   

4.

Background

The primary cilium is a sensory organelle generated from the centrosome in quiescent cells and found at the surface of most cell types, from where it controls important physiological processes. Specific sets of membrane proteins involved in sensing the extracellular milieu are concentrated within cilia, including G protein coupled receptors (GPCRs). Most GPCRs are regulated by β-arrestins, βarr1 and βarr2, which control both their signalling and endocytosis, suggesting that βarrs may also function at primary cilium.

Methodology/Principal Findings

In cycling cells, βarr2 was observed at the centrosome, at the proximal region of the centrioles, in a microtubule independent manner. However, βarr2 did not appear to be involved in classical centrosome-associated functions. In quiescent cells, both in vitro and in vivo, βarr2 was found at the basal body and axoneme of primary cilia. Interestingly, βarr2 was found to interact and colocalize with 14-3-3 proteins and Kif3A, two proteins known to be involved in ciliogenesis and intraciliary transport. In addition, as suggested for other centrosome or cilia-associated proteins, βarrs appear to control cell cycle progression. Indeed, cells lacking βarr2 were unable to properly respond to serum starvation and formed less primary cilia in these conditions.

Conclusions/Significance

Our results show that βarr2 is localized to the centrosome in cycling cells and to the primary cilium in quiescent cells, a feature shared with other proteins known to be involved in ciliogenesis or primary cilium function. Within cilia, βarr2 may participate in the signaling of cilia-associated GPCRs and, therefore, in the sensory functions of this cell “antenna”.  相似文献   

5.
Mating pheromone-induced alteration of the cell surface proteins of haploid cells, presumed to play crucial roles in the specific cell-cell interactions during sexual conjugation of Tremella mesenterica , was investigated. Exposed surface proteins were revealed by lactoperoxidase-catalyzed iodination in combination with polyacrylamide gel electrophoresis and autoradiography. From comparison of the molecular species of 125I-labeled surface proteins of the vegetative and the gamete (mating pheromone-treated) cells of the two compatible mating types (ab and AB), it was suggested that a striking change in cell surface structure occurs during the differentiation; although labeled protein species of the vegetative cells of the two mating types were indistinguishable, several new species, both mating type specific and nonspecific, appeared in the gamete cells. Turnover of the labeled proteins of the vegetative cells was negligible, whereas that of the gamete cells was rapid with release of low-molecular-weight labeled proteins in the medium. A role for the labeled surface proteins of the gamete cells in the cell-cell interactions during sexual conjugation was suggested by the following: the surface changes were induced by mating pheromone; the labeled proteins were preferentially localized on the surface of the mating tube; the labeled species appeared sequentially during the differentiation; and mating type-specific species were present in both mating types.  相似文献   

6.
Chlamydomonas lytic enzyme of the cell wall (gamete wall-autolysin) is responsible for shedding of cell walls during mating of opposite mating-type gametes. This paper reports some topographic aspects of lytic enzyme in cells. Both vegetative and gametic cells contain the same wall lytic enzyme. The purified enzyme is a glycoprotein with an apparent molecular mass of 67 kD by gel filtration and 62 kD by SDS PAGE, and is sensitive to metal ion chelators and SH-blocking agents. These properties are the same as those of the gamete wall-autolysin released into the medium by mating gametes. However, the storage form of the enzyme proves to be quite different between the two cell types. In vegetative cells, the lytic enzyme is found in an insoluble form in cell homogenates and activity is released into the soluble fraction only by sonicating the homogenates or freeze-thawing the cells, whereas gametes always yield lytic activity in the soluble fractions of cell homogenates. When vegetative cells are starved for nitrogen, the storage form of enzyme shifts from its vegetative state to gametic state in parallel with the acquisition of mating ability. Adding nitrogen to gametes converts it to the vegetative state concurrently with the loss of mating ability. We also show that protoplasts obtained by treatment of vegetative cells or gametes with exogenously added enzyme have little activity of enzyme in the cell homogenates, suggesting that lytic enzyme is stored outside the plasmalemma. When the de-walled gametes or gametes of the wall-deficient mutant, cw-15, of opposite mating types are mixed together, they mate normally but the release of lytic enzyme into the medium is practically negligible. When the de-walled vegetative cells are incubated, the lytic enzyme is again accumulated in the cells after the wall regeneration is almost complete.  相似文献   

7.
Isolated flagella from gametes of both mating types (mt+ and mt-) of Chlamydomonas reinhardii were suspended in buffer containing 7% sucrose. After mixing instantaneous agglutination occurred, giving rise to clumps which seem to be stable for at least 24 h. Control experiments show that no aggregates are formed when gametic flagella of one mating type are mixed with flagella prepared from vegetative cells of the other mating type.This in vitro agglutination is inhibited by a number of salt solutions in the same concentration range in which the agglutination of live gametes is affected. Moreover the clumps of flagella tend to disaggregate completely when the salt solutions are added after agglutination has occurred, or by treatment with trypsin. These observations suggest that the in vitro agglutination of isolated gametic flagella indeed reflects their physiological role in the recognition step of the mating process, which appears to be possible without participation of live gametes.We have also investigated the activity of glycosyl transferases on isolated gametic flagella before and during the in vitro agglutination reaction. As there was no detectable increase in the activity of glycosyl transferases, our results do not favour the hypothesis that these enzymes are involved in the primary step of recognition between gametic flagella.Dedicated to Prof. Dr. Otto Kandler on the occasion of his 60th birthday  相似文献   

8.
Two types of tubulin induction are observed in Chlamydomonas reinhardi. One is elicited by flagellar detachment and the other occurs as a normal event of the vegetative cell cycle. In the former case, a strong and extensive induction of tubulin synthesis occurs following deflagellation of cells in all phases of the life cycle [vegetative, gametic, and (early) zygotic]. Synthesis is initiated in all three cell types within 15 min after deflagellation. In gametic and zygotic cells, tubulin synthesis so induced accounts for 15 to 20% of the total protein synthesis during the 1-hr peak period of tubulin production. The ability to support both tubulin synthesis and flagellar regeneration is lost in zygotes at 1.5 hr after the initiation of zygotic development. This alteration represents one of several dramatic shifts in the programming of protein synthesis that occur during the first 4 hr of zygotic differentiation in C. reinhardi. The second (i.e., cell cycle-dependent) type of induction is observed in synchronously growing vegetative cells at ~1.5–2 hr prior to cytokinesis. Tubulin synthesis, in this case, persists at relatively high levels (~5% of the total protein synthesis) for the next 9 hr, i.e., through the entire period of cell division to a time just before the liberation of fully flagellated daughter cells at hr 20 of the cell cycle. Changes in the programming of protein synthesis, and of tubulin synthesis in particular, are discussed in relation to specific physiological and cytological transitions that occur during the growth and differentiation of C. reinhardi.  相似文献   

9.
To determine the ultrastructural and biochemical bases for flagellar adhesiveness in the mating reaction in Chlamydomonas, gametic and vegetative flagella and flagellar membranes were studied by use of electron microscope and electrophoretic procedures. Negative staining with uranyl acetate revealed no differences in gametic and vegetative flagellar surfaces; both had flagellar membranes, flagellar sheaths, and similar numbers and distributions of mastigonemes. Freezecleave procedures suggested that there may be a greater density of intramembranous particles on the B faces of gametic flagellar membranes than on the B faces of vegetative flagellar membranes. Gamone, the adhesive material that gametes release into their medium, was demonstrated, on the basis of ultrastructural and biochemical analyses, to be composed of flagellar surface components, i.e., membrane vesicles and mastigonemes. Comparison of vegetative (nonadhesive) and gametic (adhesive) "gamones" by use of SDS polyacrylamide gel electrophoresis showed both preparations to be composed of membrane, mastigoneme, and some microtubule proteins, as well as several unidentified protein and carbohydrate-staining components. However, there was an additional protein of approximately 70,000 mol wt in gametic gamone which was not present in vegetative gamone. When gametic gamone was separated into a membrane and a mastigoneme fraction on CSCl gradients, only the membrane fraction had isoagglutinating activity; the mastigoneme fraction was inactive, suggesting that mastigonemes are not involved in adhesion.  相似文献   

10.
A structural and biochemical study is presented concerning the agglutination of gametic flagella, the initial step in the mating reaction of Chlamydomonas reinhardtii. An alteration in the distribution of the intramembranous particles revealed by freeze-fracturing of flagella membranes is shown to accompany gametic differentiation in both mating types. The isolation and electrophoretic analysis of flagellar membranes and mastigonemes are reported; no electrophoretic differences can be detected when the membrane or mastigoneme glycoproteins from vegative and gametic cells are compared, nor when glycoproteins from the two mating types are compared, and no novel polypeptides are present in gametic preparations. The membrane vesicles, after they are freed of mastigonemes by sedimentation through a discontinuous sucrose gradient, are extremely active as an isoagglutinin, indicating a direct involvement of the membrane in the mating reaction.  相似文献   

11.
The patterns of alanine dehydrogenase, glutamate dehydrogenase and malate dehydrogenase activity were studied during the normal vegetative cell cycle and during the process of gametic differentiation and dedifferentiation in synchronized cultures of Chlamydomonas reinhardtii. During all three phases of growth and differentiation the synthesis of DNA was also measured. During gametic differentiation all three enzyme levels were suppressed compared to vegetative cells although DNA and cell number were comparable. During gametic dedifferentiation no DNA synthesis occurred during the first 24 h cycle and only a doubling during the second. It was not until the third cycle that a normal 4-fold increase in DNA was observed. Cell number followed a similar pattern. Athough the levels of alanine dehydrogenase and malate dehydrogenase were uniformly low during the first cycle when glutamate dehydrogenase increased 4-fold, during the second cycle the patterns of these enzymes changed markedly. The enzymes did not attain levels characteristic of vegetative cells until the third cycle.  相似文献   

12.
The optimal allocation to sexual and vegetative reproduction as well as the optimal values of other life-history characteristics such as phenology, growth and mating system are likely to depend on the life-cycle of the organism. I tested whether plants of Mimulus guttatus originating from temporarily wet populations where the species has an enforced annual life-cycle have higher allocation to sexual reproduction, lower allocation to vegetative reproduction, more rapid phenology, faster growth, and floral traits associated with a self-fertilizing mating system than plants from permanently wet populations where the species has a perennial life-cycle. I grew a total of 1377 plants originating from three populations with an annual life-cycle and 11 populations with a perennial life-cycle in a greenhouse under permanently and temporarily wet conditions. Plants of M. guttatus in permanently wet conditions had significantly more vegetative reproduction and tended to have a faster growth than plants in the temporarily wet conditions, indicating plasticity in these life-history traits. Plants from populations with an annual life-cycle invested significantly more in sexual reproduction and significantly less in vegetative reproduction than the ones from populations with a perennial life-cycle. Moreover, this study showed that plants originating from populations with an annual life-cycle have a significantly faster development and floral traits associated with autonomous self-fertilization. In conclusion, this study suggests that there has been adaptive evolution of life history traits of M. guttatus in response to natural watering conditions that determine the life span of the species.  相似文献   

13.
The primary cilium is a ubiquitous, non-motile microtubular organelle lacking the central pair of microtubules found in motile cilia. Primary cilia are surrounded by a membrane, which has a unique complement of membrane proteins, and may thus be functionally different from the plasma membrane. The function of the primary cilium remains largely unknown. However, primary cilia have important sensory transducer properties, including the response of renal epithelial cells to fluid flow or mechanical stimulation. Recently, renal cystic diseases have been associated with dysfunctional ciliary proteins. Although the sensory properties of renal epithelial primary cilia may be associated with functional channel activity in the organelle, information in this regard is still lacking. This may be related to the inherent difficulties in assessing electrical activity in this rather small and narrow organelle. In the present study, we provide the first direct electrophysiological evidence for the presence of single channel currents from isolated primary cilia of LLC-PK1 renal epithelial cells. Several channel phenotypes were observed, and addition of vasopressin increased cation channel activity, which suggests the regulation, by the cAMP pathway of ciliary conductance. Ion channel reconstitution of ciliary versus plasma membranes indicated a much higher channel density in cilia. At least three channel proteins, polycystin-2, TRPC1, and interestingly, the alpha-epithelial sodium channel, were immunodetected in this organelle. Ion channel activity in the primary cilium of renal cells may be an important component of its role as a sensory transducer.  相似文献   

14.
15.
The primary cilium is a microtubule-based organelle that senses extracellular signals as a cellular antenna. Primary cilia are found on many types of cells in our body and play important roles in development and physiology. Defects of primary cilia cause a broad class of human genetic diseases called ciliopathies. To gain new insights into ciliary functions and better understand the molecular mechanisms underlying ciliopathies, it is of high importance to generate a catalog of primary cilia proteins. In this study, we isolated primary cilia from mouse kidney cells by using a calcium-shock method and identified 195 candidate primary cilia proteins by MudPIT (multidimensional protein identification technology), protein correlation profiling, and subtractive proteomic analysis. Based on comparisons with other proteomic studies of cilia, around 75% of our candidate primary cilia proteins are shared components with motile or specialized sensory cilia. The remaining 25% of the candidate proteins are possible primary cilia-specific proteins. These possible primary cilia-specific proteins include EVC2, INPP5E, and inversin, several of which have been linked to known ciliopathies. We have performed the first reported proteomic analysis of primary cilia from mammalian cells. These results provide new insights into primary cilia structure and function.  相似文献   

16.
Cell-free preparations of mating-reactive cilia were obtained from complementary mating types of Paramecium caudatum with the treatment of the cells in a Triton X-100 solution and then in a Ca solution. When the cilia from both mating types thus obtained were mixed, strong agglutination was observed.  相似文献   

17.
Zygospore formation in different strains of the Closterium peracerosum-strigosum-littorale complex was examined in this unicellular isogamous charophycean alga to shed light on gametic mating strains in this taxon, which is believed to share a close phylogenetic relationship with land plants. Zygospores typically form as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt) cells during sexual reproduction in the heterothallic strain, similar to Chlamydomonas. However, within clonal cells, zygospores are formed within homothallic strains, and the majority of these zygospores originate as a result of conjugation of two recently divided sister gametangial cells derived from one vegetative cell. In this study, we analyzed conjugation of homothallic cells in the presence of phylogenetically closely related heterothallic cells to characterize the reproductive function of homothallic sister gametangial cells. The relative ratio of non-sister zygospores to sister zygospores increased in the presence of heterothallic mt+ cells, compared with that in the homothallic strain alone and in a coculture with mt cells. Heterothallic cells were surface labeled with calcofluor white, permitting fusions with homothallic cells to be identified and confirming the formation of hybrid zygospores between the homothallic cells and heterothallic mt+ cells. These results show that at least some of the homothallic gametangial cells possess heterothallic mt-like characters. This finding supports speculation that division of one vegetative cell into two sister gametangial cells is a segregative process capable of producing complementary mating types.  相似文献   

18.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

19.
Using the quick-freeze, deep-etch technique, we compare the structure of the cane-shaped plus and minus sexual agglutinin molecules purified from gametes of Chlamydomonas reinhardi. We also describe the structure of three additional gamete-specific fibrillar molecules, called short canes, loops, and crescents, which are structurally related to the agglutinins. Four non-agglutinating mutant strains are found to produce the three latter fibrils but not canes, supporting our identification of the cane-shaped molecule as the agglutinin. The heads of the plus and minus canes are shown to differ in morphology. Moreover, two treatments that inactivate the plus agglutinin in vitro--thermolysin digestion and disulfide reduction/alkylation--bring about detectable structural changes only in the head domain of the cane, suggesting that the head may play an indispensible role in affecting gametic recognition/adhesion. We also present quick-freeze, deep-etch images of the flagellar surfaces of gametic, vegetative, and mutant cells of Chlamydomonas reinhardi. The gametic flagella are shown to carry the canes, short canes, loops, and crescents present in in vitro preparations. The cane and crescent proteins self-associate on the flagellar surface into stout fibers of uniform caliber, and they align along the longitudinal axis of the flagellum. The short canes and loops co-purify with flagella but, in the presence of mica, dissociate so that they lie to the sides of the flagella. The agglutinin canes of both mating types are oriented with their hooks at the membrane surface and their heads directed outward, where they are positioned to participate in the initial events of sexual agglutination.  相似文献   

20.
The entire nervous system of the smallest annelid hitherto known, the dwarf male of the highly dimorphic species Dinophilus gyrociliatus , has been reconstructed by means of TEM investigations of serial ultrathin sections. Altogether there are 68 neurons, 40 of which have a sensory function. The structure and distribution of them is described. The receptor endings of the 20 sensory cells of each side are located either in two groups — the anterior receptor group and the posterior receptor group — or are singly positioned in the integument. Structural differences of the apical portion of the dendrites enables four types of receptors to be distinguished: three types with emergent cilia and one type with non-emergent cilia. Neurons with emergent cilia can be monociliated collar cells as well as mono- or multiciliated cells without collar. Special vesicle-in-vesicle structures, are located close to the basal portion of the cilia in some of these cells. The non-emergent cilia border closely to a neighbouring epidermal cell and contain a prominent intraciliary vesicle. The function of receptors is discussed with regard to a comparison with receptors in other polychaete species, structural specializations and their distribution pattern on the animal's surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号