首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binaural interaction (BI) components in brain-stem auditory evoked potential (BAEP) and their changes with stimulus intensity and repetition rate were examined in human adult. Seven BI components were identified, which occurred between the latency range of 5 and 11 ms and coincided consistently with the latency range of BAEP waves IV–VII. Waves DV and DVII, occurring at the downslopes of BAEP-waves V and VII, respectively, were the two most prominent and reproducible BI components. Wave DVII existed consistently at high, moderate and, in most cases, low stimulus intensities, suggesting that this component is neurogenic although acoustic cross-talk may account for a part of its waveform at high stimulus intensities. The latencies of all BI components increased as a function of decreasing stimulus intensity, while the interpeak intervals, especially DV–DVII, were essentially constant at different intensity levels. The amplitudes of BI components decreased slightly with decreasing intensity. As click repetition rate increased, BI wave latencies and interpeak intervals increased slightly and amplitudes decreased slightly. When repetition rate increased to above 20/s, BI components became poorly differentiated. Lower repetition rates, e.g. 10/s, are therefore preferred for routine derivation of the BI. The changes in the latency and amplitude of BI components with stimulus intensity and repetition rate were associated or concomitant with those of the corresponding BAEP components in monaural and binaural potentials. In view of the concomitant relationship between BI and BAEP latency, we designate BI components in association with the corresponding BAEP components.  相似文献   

2.
Brain-stem auditory evoked potentials (BAEPs) were performed on 30 male and 30 female young normal Oriental subjects, using both condensation and rarefaction stimulation. The effects of sex and click polarity on the BAEP latencies and amplitudes were studied. Females had shorter absolute and interpeak latencies and higher absolute amplitudes than the males. These sex-related BAEP differences were independent of the click polarity. Rarefaction clicks produced shorter wave I latency and longer I–III interpeak latency, but the differences were significant in the female only. The polarity-related BAEP amplitude differences were essentially independent of the sex. BAEPs performed on 60 sex- and age-matched young Caucasian subjects produced similar results. The importance of establishing control BAEP values according to the sex and click polarity is emphasised.  相似文献   

3.
Latency and interpeak interval of the brain-stem auditory evoked potentials at different click rates were measured in 80 healthy children from birth to 6 years, and 21 adults. Clicks were presented at 10, 30, 50, 70 and 90/sec, and 70, 40 and 20 db HL. At high stimulus intensity (70 dB SL), all latencies of waves I, III and V and the I–V, I–III and III–V intervals showed a progressive prolongation with increasing repetition rate. The latency- and the interval-rate functions were similar for all age groups but their slopes were slightly steeper in younger than in older. As click rate increased from 10/sec to 90/sec, the latencies of waves I, III and V at different age groups were prolonged by 4–10%, 9–13% and 12–15% respectively, and the intervals of I–V, I–III and III–V were prolonged by 15–16%, 8–16% and 14–24% respectively. The mean increments of wave V latency and I–V interval in different age groups were 0.404–0.575 and 0.332–0.526 msec respectively with increasing click rate from 10 to 50/sec, and 0.697–1.009 and 0.629–0.776 msec respectively with increasing click rate from 10 to 90/sec. The younger the age the larger the absolute increments for all these BAEP parameters, but the increasing rates for a BAEP measure were similar among different age groups, exhibiting no age-dependent differences. The III–V/I–III interval ration in most age groups was increased by 3–10% with increasing click rate from 10 to 90/sec, suggesting that the III–V interval was affected by stimulus rate slightly more than I–III interval.At moderate (40 dB HL) and low (20 dB SL) intensity, all waves and intervals showed similar latency- and interval-rate functions to those at high intensity. This demonstrates that the shifting latencies and interpeak intervals with increasing click rate appeared to be independent of the stimulus intensities.  相似文献   

4.
The ABR wave forms of 16-day-old and adult Mongolian gerbils were evoked by click stimuli presented at rates ranging from 1 to 80/sec. Wave I and wave IV thresholds were determined for each of 5 click rates. Amplitudes and latencies of waves I and IV were measured at each of 7 click rates and 3 intensity levels (15, 40 and 65 dB above threshold). Thresholds for waves I and IV in the adult gerbil and wave I in the 16 day gerbil were unaffected by changes in stimulus repetition rate. Neonatal wave IV thresholds were unaffected by click rate for rates below 25/sec but increased approximately 7 dB/decade increase in click rate when rate exceeded 25/sec. Increasing click rate produced greater reductions in ABR amplitude among neonates than adults for both waves I and IV. Decreases in amplitude due to increasing rate were independent of intensity level in both neonatal and adult subjects. Increasing rate produced similar increases in wave I latency among 16 day and adult subjects, but produced much greater increases in wave IV latency among neonates. Stimulus intensity level and click rate acted independently on wave I and wave IV latency in adult subjects and wave I latency in neonates. However, an interaction between rate and intensity was observed with respect to neonatal wave IV latency.  相似文献   

5.
The correlations between clinical signs and BAEP latency, amplitude and dispersion variables were investigated in 98 multiple sclerosis patients. A new dispersion variable, the wave IV–V “shape ratio” (SR IV–V), correlated most strongly with brain-stem signs (i.e., nystagmus). Severely reduced wave IV–V amplitude was frequently found in patients with vertical nystagmus or internuclear ophthalmoplegia, and interpeak latency (IPL) III–V correlated most strongly with cerebellar dysfunction (i.e., ataxia). The results may reflect different localizing ability among the various BAEP variables.The association between ataxia and increased IPL III–V was significantly stronger for BAEP to C clicks than to R clicks. Patients with abnormal BAEPs to one polarity (C or R) but not to the other, had significantly more clinical dysfunction than patients with normal BAEPs to both C and R clicks. Hence, C vs. R discordance may be interpreted to indicate possible brain-stem dysfunction.  相似文献   

6.
We studied brainstem auditory evoked potentials (BAEPs) in 8 fetal sheep in utero, ranging in gestational age from 105 to 142 days gestation (normal term 147 days). We could not elicit BAEPs prior to 117 days of gestation. After this age rapid maturation was seen, with three discernible peaks observed prior to 120 days and five peaks after 120 days. A significant (P less than 0.05) gestational age related fall in peak latencies and interpeak latencies was observed. The rate of stimulus presentation that could be tolerated without significant changes in wavepeak latency or amplitude also increased with advancing gestational age. In older fetuses (greater than 125 days), where a differentiated electrocorticogram (ECOG) was observed, differences were seen in latency and amplitude of several of the BAEP wavepeaks dependent upon the state. In high voltage ECOG states the amplitudes of wave IV and V were significantly (P less than 0.05) greater than in the low voltage ECOG state and the latencies of wave I, II and V were significantly (P less than 0.05) longer in low as compared to high voltage ECOG state. The BAEP, being obtainable over very short periods of time, appears to provide a useful indice of neural maturation for the sheep fetus in utero.  相似文献   

7.
The present study examined the effects of an acute psychoactive dose of cocaine hydrochloride (HCl) in the rat, using the brain-stem auditory potential (BAEP) as an objective, quantitative measure of this substance's effects on brain and auditory electrophysiology. The animals were 8 adult Long-Evans rats (4 female, 4 male). BAEPs were recorded from skull screw electrodes during a baseline period as well as 30–90 min after cocaine HCl treatment (10 mg/kg, i.p.). Normothermia was maintained to control for possible temperature-related effects. Cocaine's effects on the BAEP were examined over a broad range of stimulus intensities (intensity profiles) and repetition rates (rate profiles). Cocaine prolonged latencies of several BAEP components at low stimulus intensities and shortened these latencies at high stimulus intensities. The average BAEP threshold was alos increased by cocaine treatment. These results were not strong, but were suggestive of a recruitment type change in auditory function. Cocaine treatment had no convincing effects on the BAEP as a function of stimulus repetition rate.  相似文献   

8.
Brain-stem auditory evoked potentials (BAEPs) were recorded in 10 common marmosets (Callithrix jacchus) to investigate the effects of recording electrode configurations, stimulus rate, and stimulus frequency on BAEP wave forms and peak latencies. Tone burst stimulations were used to evaluate the effects of pure tone on BAEP wave forms. Five positive peaks superimposed on positive and negative slow potentials were identified in the BAEP recorded at the linkage between the vertex and the dorsal base of the ear ipsilateral to a monaural stimulus. When the reference electrode was placed at the ipsilateral mastoid or the neck, the amplitudes of positive and negative slow potentials and the incidence of wave I increased. There were no significant changes in peak latencies of BAEP waves with changes in stimulus rate from 5 to 20/s. It was possible to record the BAEPs in response to tone burst stimulations at frequencies extending from 0.5 to 99 kHz. Wave I appeared apparently at high stimulus frequencies; while waves III to V, at low frequencies. Wave II was recorded at frequencies ranging from 0.5 to 99 kHz and comprised a superposition of 2 or 3 potentials.  相似文献   

9.
Stochastic Properties of Discrete Waves of the Limulus Photoreceptor   总被引:7,自引:6,他引:1  
In the dark-adapted photoreceptor of the horseshoe crab, Limulus, transient discrete depolarizations of the cell membrane, discrete waves, occur in total darkness and their rate of occurrence is increased by illumination. The individual latencies of the discrete waves evoked by a light stimulus often cannot be resolved because the discrete waves overlap in time. The latency of the first discrete wave that follows a stimulus can be determined with reasonable accuracy. We propose a model which allows us to make an estimate of the distribution of the latencies of the individual light-evoked discrete waves, and to predict the latency distribution of the first discrete wave that follows a stimulus of arbitrary intensity-time course from the latency distribution of the first discrete wave that follows a brief flash of light. For low intensity stimuli, the predictions agree well with the observations. We define a response as the occurrence of one or more discrete waves following a stimulus. The distribution of the peak amplitudes of responses suggests that the peak amplitude of individual discrete waves sometimes has a bimodal distribution. The latencies of the two types of discrete waves, however, follow similar distributions. The area under the voltage-time curve of responses that follow equal energy long (1.25 sec) and short (10 msec) light stimuli follows similar distributions, and this suggests that discrete waves summate linearly.  相似文献   

10.
Effects of stimulus repetition rate on the slow and fast components of the auditory brain-stem response (ABR) were investigated in 10 adult subjects with normal hearing. The ABRs were recorded with click stimuli at repetition rates of 8, 13.3, 23.8, 40 and 90.9/sec and at an intensity level of 55 dB nHL. Power spectral analysis of the averaged responses was performed. Then the responses were divided into a slow component (0–400Hz) and a fast component (400–1500 Hz) by using digital filtering technique. The magnitude of the slow component was little affected with increasing stimulus rate from 8/sec to 90.9/sec, while successive waves of the fast component, including wave V, decreased in amplitude as stimulus rate was increased. The latency of the slow component and each wave of the fast component was prolonged with increasing click rates. The shift of latency became longer in the later waves than in the earlier waves.  相似文献   

11.
Auditory brain-stem evoked potentials ABEPs were recorded from 57 neonates ranging in gestational age between 27 and 43 weeks. Averages and standard deviations of I, III and V peak latencies, I–V, I–III and III–V inter-peak latency differences (IPLDs), for 10/sec and 55/sec clicks were calculated for each age group. An additional measure, the net effect of increasing stimulus rate (ISR), was calculated by subtracting 10/sec measures from their 55/sec counterparts. Correlations between ABEP measures and subject age were determined.The results of this study demonstrate a significant correlation between gestational age and electrophysiological measures of peripheral, as well as central, conduction: an inverse correlation between age and peak latencies as well as IPLDs. The slope of this correlation was steeper for the higher stimulus rate. The slope of 55/sec measures vs. age was the sum of the respective slopes of 10/sec measures and of ISR.The maturation of 10/sec measures may reflect white matter development, while ISR changes with gestational age represent maturation of synaptic efficacy. Thus, the maturation of 55/sec measures reflects the combined maturation of nerve conduction velocity and synaptic efficacy along the neonatal auditory nerve and brain-stem. This differential evaluation may enable more accurate determination of developmental age of neonates, with respect to total maturation as well as its constituents.  相似文献   

12.
Experiments were conducted to determine whether a consistent pattern of auditory nerve brain-stem evoked potential (ABP) abnormalities could be demonstrated in the presence of a synaptic lesion model in cats (elevated levels of the barbiturate thiopental). The ABP in response to low (10/sec) and high (80/sec) stimulus rates was recorded. In order to differentiate between the effects of the elevated drug levels on axonal propagation and on synaptic transmission, the early components of the somatosensory evoked potential (SEP) were also recorded, with particular attention to the first SEP wave, which is solely an axonal event without any intervening synapse. Calculations showed that the effect on synapses was 3.0–9.5 times greater than the effect of the drug on axonal propagation. As the level of barbiturates increased (representing a more severe synaptic lesion), the interpeak latencies of the ABP and the SEP became progressively prolonged, more so than the dependence of the first waves of both the ABP and the SEP on drug level. In general, amplitudes were not affected. At progressively elevated drug levels, higher stimulus repetition rates did not have an increasingly greater effect than lower rates on evoked response latencies and amplitudes so that this study also shows that the use of elevated stimulus rates does not hold much promise in the diagnosis of synaptic lesions.  相似文献   

13.
Short-, middle- and long-latency auditory evoked potentials (SAEPs, MAEPs and LAEPs) were examined in 12 subjects with Down's syndrome and in 12 age-matched normal subjects. In comparison with the normal subjects, Down subjects showed shorter latencies for SAEP peaks II, III, IV and V (and correspondingly shorter interpeak intervals I–II and I–III) so long as stimulus intensity was at least 45 dB SL. The MAEP peak Na had a longer latency in Down subjects than in normal subjects, but not the Pa latency. In passive oddball experiments for LAEPs, the latencies of all components from N1 to P3 were progressively longer in Down subjects, and the N2-P3 amplitude increased slightly between the first and fourth blocks of stimuli (whereas in the normal subjects it decreased). These alterations in auditory evoked potentials, which may correlate with cerebral alterations in organization and responsiveness responsible for deficient information processing, may constitute an electrophysiological pattern that is characteristic of Down's syndrome.  相似文献   

14.
Brainstem auditory evoked potentials (BAEPs) were studied in 46 1st- to 11th-year students (22 boys and 24 girls) of a rural secondary school in Arkhangel’sk oblast. The objective of this work was to study age- and sex-related differences in BAEP characteristics in children and adolescents, living in the North and assess the BAEP characteristics as compared to reference values. In all three age groups of students, interpeak intervals I–III, III–V, and I–V characterizing the peripheral and central conduction times were shorter in girls than in boys. Interpeak interval III–V tended to increase with age only in boys (at puberty), with a significant increase in the latencies of waves I, III, and V. The BAEP characteristics in the subjects examined included a shorter peak latency and a greater amplitude of wave I (except senior students), relatively prolonged interpeak interval I–III, and more pronounced sex-related differences in BAEPs, especially at puberty. These findings show that it is necessary to revise regional reference values for BAEPs, differentiated by sex and age, including at puberty.  相似文献   

15.
The brain-stem auditory evoked potential (BAEP), a sensitive test of the functional status of the neonatal brain, has not been studied in utero since no practical technique for human fetal recording is available. We have developed a simple recording technique which allows continuous monitoring of the fetal AEP during labor. Waves I, III and V of the fetal brain-stem AEP have been consistently identified. Wave form morphology, interpeak latencies, and latency-intensity relations are similar to postnatal recordings. Middle latency potentials have also been recorded, with wave forms that correspond to the neonatal middle latency AEP.  相似文献   

16.
The latency distributions of normal brain-stem auditory evoked potential (BAEP) components elicited by condensation (C) and rarefaction (R) clicks at 10 and 50 Hz were found to be double- or multi-peaked for II (10 and 50 Hz), III (50 Hz), IV (10 and 50 Hz) and V (10 Hz). A bifid component III was found in 3.5% (10 Hz) and 7.4% (50 Hz) of BAEPs. A bifid II and triple IV/V configuration were occasionally noted. The prevalences of the different IV/V complex configurations were significantly dependent upon click phase and rate. These results suggest that several subcomponent might participate in the generation of the single BAEP components and that a single generator may contribute to different BAEP components in different subjects.Early subcomponents between I and II (Ib) were found in 13% of 10 Hz BAEPs and 27% of 50 Hz BAEPs (P = 0.002) and the latency distribution of Ib seemed to be bimodal. Ib/I relative amplitude frequently increased with 50 Hz stimulation.We suggest that the generator of Ib is partially cochlear (CM) and partially neural (equivalent to N2 of the ECochG-AP) in origin.The existence of subcomponents must be recognized in clinical use of BAEPs both to avoid misinterpretation and to decrease the normal variability in monophasic click evoked BAEP studies.  相似文献   

17.
We measured the conduction velocity of the intracranial portion of the auditory nerve in 3 patients undergoing vestibular nerve section to treat Ménière's disease. The conduction velocity varied from patient to patient, with an average value of 15.1 m/sec. The latency of peak III of the brain-stem auditory evoked potentials (BAEPs) increased by an average of 0.5 msec as a result of exposure of the eighth nerve, and if that increase is assumed to affect the entire length of the auditory nerve (2.6 cm) evenly, then the corrected estimate of conduction velocity would be 22.0 m/sec. Estimates of conduction velocity based on the interpeak latencies of peaks I and II of the BAEP, assuming that peak II is generated by the mid-portion of the intracranial segment of the auditory nerve, yielded similar values of conduction velocities (about 20 m/sec).  相似文献   

18.
A parametric scale for measuring BAEP latencies is set forth here for use in multiple sclerosis (MS) therapeutic trials and similar longitudinal studies. Derived constants are used to create a synthetic I–V interpeak interval, needed for cases where V (or other waves) are absent. Transitional peaks (peaks on the verge of disappearing) were studied in MS patients and used to determine appropriate values for the weighting constants. The resulting scale or index makes use of latencies to whichever peaks are still present. In theory such a scale is more sensitive to small changes than either a simple ordinal scale of which peaks remain or a parametric scale of I–V interpeak intervals excluding the 25–40% of MS records with absent wave V. To test this synthetic I–V index in practice, we studied it in 100 MS patients entering a therapeutic trial. It was found to correlate appropriately with patients' history, physical examination, and clinical scales at entry into the trial. Parametric statistical analysis of the derived scale was able to show a statistically significant drug effect during the therapeutic trial, whereas 3 other data analysis techniques showed at best a trend that did not quite reach significance.  相似文献   

19.
Auditory nerve brain-stem (ABR) and somatosensory evoked responses (SER) were recorded in cats as body temperature was uniformly lowered from 37 to 27°C. Analysis of the results showed that the alterations in the evoked responses were due to disturbances induced both in axonal propagation and synaptic transmission by the hypothermia. By studying the first wave of the SER, which is solely an axonal event, and by assuming reasonable values for the total synaptic delay and axonal propagation times along the ABR pathway, it was concluded that this lesion model induced an effect on synaptic transmission 1.3–1.7 times greater than that on axonal propagation. There was a strong inverse correlation between wave latency and body temperature, with slightly steeper slopes for the longer latency waves. Wave amplitudes were not correlated with temperature. Furthermore, the wave latencies and amplitudes were generally not dependent on stimulus rate.  相似文献   

20.
During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I–VI), and 1.4 ms (II–IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal’s size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号