首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nitrate (AgNO3), an inhibitor of the physiological actionof ethylene, reduced cell growth, promoted ethylene production,increased the yield of protoplasts and reduced shoot regenerationfrom sugarcane heterogeneous cell suspension cultures. The increasein the rate of protoplast isolation from cultures treated withAgNO3 (0 to 59 µM) correlate with an increase in endogenousethylene production by the cells. The addition to the culturemedium of chemicals that either inhibited (aminoethoxyvinylglycine,AVG) or promoted (aminocyclopropane-1-carboxylic acid, ACC)ethylene biosynthesis did not alter the number of protoplastsisolated from these cultures. However, protoplasts were isolatedwith AVG in combination with AgNO3 even though ethylene productionwas inhibited. These results suggested that AgNO3 may be havinganother more direct effect on protoplast release. One such sitemay be the cell wall or on cell metabolism conditioning cellsto release protoplasts after enzyme treatment. Key words: Sugarcane, cell suspension, protoplast, silver nitrate, ethylene  相似文献   

2.
Direct somatic embryogenesis is favoured over indirect methods for the in vitro propagation of Coffea canephora, as the frequency of somaclonal variation is usually reduced. Ethylene action inhibitors improve the tissue culture response and thus silver nitrate (AgNO3) is used for direct somatic embryogenesis in coffee. It was observed that silver thiosulphate (STS) that is a more potent ethylene action inhibitor, induced a much robust response in C. canephora cotyledonary leaf explants with 7.49?±?0.57 and 7.08?±?0.12 embryos/explant at 60 and 80 µM AgNO3, respectively compared to 3.3?±?0.18 embryos/explant at 40 µM AgNO3. Transient transformation indicated that STS improved the transformation potential of embryos by enhancing Agrobacterium tumefaciens adherence to surfaces. In vitro adherence assays demonstrated that the cell wall material from STS-derived embryos provide a better substratum for adherence of Agrobacterium. Furthermore, blocking this substratum with anti-mannan hybridoma supernatant negatively effects the adherence. The presence of galactose and mannose residues in the decomposed cellulose fraction of STS treated somatic embryos are indicative of de-branching and re-modelling of galactomannan in response to ethylene inhibition. Genes of mannan biosynthesis, degradation and de-branching enzyme were affected to different extents in embryos derived in AgNO3 and STS containing somatic embryogenesis medium. The results indicate that ethylene-mediated cell wall galactomannan remodelling is vital for improving the transgenic potential in coffee.  相似文献   

3.
Ethylene release by potato shoots cultured in closed boxes was suppressed by the addition of silver thiosulfate to the culture medium. Shoots cultured in the presence of silver thiosulfate produced appreciably more tissue and the yield of protoplasts per unit tissue mass was vastly increased, resulting in an 8 fold increase of protoplast yield per shoot. Exposure of pricked leaves to macerating enzymes facilitated ethylene generation. Leaves of shoots which were previously cultured in silver thiosulfate containing medium generated much less ethylene than leaves from control shoots and this generation could be further reduced by the addition of acetylsalicylic acid during maceration. The capability of polyethylene glycol treated potato protoplasts to produce microcalli was vastly increased by the addition of silver thiosulfate during exposure of protoplasts to Ca(NO3)2 following the polyethylene glycol treatment. Similarly, when a plasmid (pCAP212) containing an expressible gene for chloramphenicol acetyltransferase was introduced into potato protoplasts through a polyethylene glycol treatment, the transient expression of acetyltransferase was very much increased by the addition of a short incubation of the protoplasts with silver thiosulfate.Abbreviations AOA (aminooxy)acetic acid - ASA acetylsalicylic acid - AVG aminoethoxyvinyl-glycine - CAT chloramphenicol acetyltransferase - MV methyl viologen - PEG polyethylene glycol - STS silver thiosulfate  相似文献   

4.
Silver nitrate and aminoethoxyvinylglycine (AVG) are often used to inhibit perception and biosynthesis, respectively, of the phytohormone ethylene. In the course of exploring the genetic basis of the extensive interactions between ethylene and auxin, we compared the effects of silver nitrate (AgNO3) and AVG on auxin responsiveness. We found that although AgNO3 dramatically decreased root indole-3-acetic acid (IAA) responsiveness in inhibition of root elongation, promotion of DR5-β-glucuronidase activity, and reduction of Aux/IAA protein levels, AVG had more mild effects. Moreover, we found that that silver ions, but not AVG, enhanced IAA efflux similarly in root tips of both the wild type and mutants with blocked ethylene responses, indicating that this enhancement was independent of ethylene signaling. Our results suggest that the promotion of IAA efflux by silver ions is independent of the effects of silver ions on ethylene perception. Although the molecular details of this enhancement remain unknown, our finding that silver ions can promote IAA efflux in addition to blocking ethylene signaling suggest that caution is warranted in interpreting studies using AgNO3 to block ethylene signaling in roots.  相似文献   

5.
Summary Lycopersicon pennellii shoots, cultured in vitro for more than a year (type I plants) produced few viable protoplasts in contrast to shoots cultured in vitro for less than five months (type II plants). Ethylene production of both plant types was compared. The low viability of plant type I protoplasts could be correlated with high ethylene production and an increased cell sap osmolality. The ethylene action inhibitor silver thiosulphate improved protoplast yield and viability, especially when using donor tissue, germinated and cultured on medium containing silver thiosulphate (type III plants). Moreover, the choice of cell wall degrading enzymes influenced protoplast viability, since ethylene release was significantly lower using Cellulase R 10 than Cellulysin. All improvements together resulted in an efficient protocol for the isolation and regeneration of Lycopersicon pennellii protoplasts.Abbrevations ACC 1-Aminocyclopropane-1-carboxylic acid - FW Fresh Weight - Mes -Morpholino ethane sulphonic acid - NMU N-Nitroso-N-Methyl-Urea - PE Plating Efficiency = Number of calli / number of protoplasts x 100% - Pps protoplasts - STS Silver thiosulfate  相似文献   

6.
Plant regeneration and transformation in vitro is often improved by adding silver ion (Ag+) to the culture media as AgNO3 or silver thiosulfate (STS). Ag+ reacts with substances to form insoluble precipitates, while thiosulfate (S2O3 2−) interferes with these reactions. We studied the implications of silver precipitation and S2O3 2− in the medium for culture development by (1) examining formation of Ag+ precipitates from AgNO3 versus STS in agar gels and their possible dependence on agar type; (2) comparing Corymbia maculata culture responses to AgNO3 and STS and determining which better suits control of culture development; (3) clarifying whether STS-dependent alterations in culture development are due to Ag+ alone or also to a separate influence of S2O3 2−. Silver precipitates appeared in aqueous gels of four agar brands supplemented with AgNO3, but not in Phytagel, which remained transparent. No precipitation was observed in gels with STS. Indole-3-butyric acid (IBA)-mediated adventitious root induction and shoot growth were higher in C. maculata shoot tips cultured on gels with STS versus AgNO3 (6–25 μM Ag+). IBA-treated shoot tips exhibited enhanced adventitious root regeneration, accelerated root elongation, increased frequency of lateral root formation, and stimulated shoot growth mediated by 100–250 μM sodium thiosulfate (Na2S2O3) in medium without Ag+. The potency of S2O3 2− in facilitating culture development has never been recognized. It is inferred that superiority of STS in stimulating multiple responses of C. maculata culture results from sustained biological activity of Ag+ through prevention of its precipitation, and from impact of S2O3 2− on cell differentiation and growth.  相似文献   

7.
The influence of ethylene on in vitro morphogenesis of Leucojum aestivum and galanthamine accumulation was studied. Calli were cultivated on Murashige and Skoog (MS) medium supplemented with 25 μM 4-amino-3,5,6-trichloropicolinic acid (picloram) and 0.5 μM benzyladenine (BA). During incubation under these conditions, callus cultures produced ethylene (9.5 nL/g fresh weight: F.W.) whereas no ethylene was found in somatic embryos cultivated on medium supplemented with 0.5 μM α-naphthalene acetic acid (NAA) and 5 μM zeatin. Application of the precursor of ethylene 1-aminocyclopropane-1-carboxylic acid (ACC) increased ethylene production in both cultures, and decreased callus growth by a factor of 1.2, whereas callus growth was enhanced by a factor of 1.1 in the presence of an inhibitor of ethylene silver nitrate (AgNO3) or by a factor of 1.2 with an absorbent potassium permanganate (KMnO4). ACC enhanced the induction of somatic embryos and the development of globular embryos. Removal of ethylene by KMnO4 during somatic embryogenesis led to the development of plants with greater length. Silver thiosulphate (STS) induced galanthamine production in callus cultures (0.1% dry weight), whereas ACC induced galanthamine production in somatic embryo cultures (2% dry weight).  相似文献   

8.
Effects of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and three ethylene inhibitors, AgNO3, aminoethoxyvinyglycine (AVG) and CoCl2, on root formation were tested in vitro using shoot cultures of the apple (Malus×domestica Borkh.) cultivar Royal Gala. ACC inhibited root formation by delaying root emergence and increasing callus formation at the bases of shoots. In contrast, ethylene inhibitors promoted root formation. Both AgNO3 and AVG at the appropriate concentrations increased the percentage of shoots producing roots and reduced callus formation at the base of these shoots. AgNO3 stimulated root emergence and enhanced root growth, while AVG increased the number of roots per shoot. CoCl2 slightly increased root number and rooting efficiency. These promotive effects may result from a reduction in ethylene concentration or inhibition of ethylene action. The results found in this study may be used to improve the rooting efficiency of other apple cultivars and rootstocks, and possibly of other plant species. Received: 2 March 1997 / Revision received: 1 July 1997 / Accepted: 18 July 1997  相似文献   

9.
Chi GL  Pua EC  Goh CJ 《Plant physiology》1991,96(1):178-183
The promotive effect of AgNO3 and aminoethoxyvinylglycine (AVG) on in vitro shoot regeneration from cotyledons of Brassica campestris ssp. pekinensis in relation to endogenous 1-amino-cyclopropane-1-carboxylic acid (ACC) synthase, ACC, and ethylene production was investigated. AgNO3 enhanced ACC synthase activity and ACC accumulation, which reached a maximum after 3 to 7 days of culture. ACC accumulation was concomitant with increased emanation of ethylene which peaked after 14 days. In contrast, AVG was inhibitory to endogenous ACC synthase activity and reduced ACC and ethylene production. The promotive effect of AVG on shoot regeneration was reversed by 2-chloroethylphosphonic acid at 50 micromolar or higher concentrations, whereas explants grown on AgNO3 medium were less affected by 2-chloroethylphosphonic acid. The distinctive effect of AgNO3 and AVG on endogenous ACC synthase, ACC, and ethylene production and its possible mechanisms are discussed.  相似文献   

10.
Summary Apical application of silver nitrate (AgNO3; 50 and 100 g per plant) and silver thiosulphate anionic complex (Ag(S2O3) 2 3– ; STS; 25, 50 and 100 g per plant) to female plants of Cannabis sativa induced the formation of reduced male, intersexual and fully altered male flowers on the newly formed primary lateral branches (PLBs); 10 g per plant of AgNO3 was ineffective and 150 g treatment proved inhibitory. A maximum number of fully altered male flowers were formed in response to 100 g STS. The induced male flowers produced pollen grains that germinated on stigmas and effected seed set. Silver ion applied as STS was more effective than AgNO3 in inducing flowers of altered sex. The induction of male flowers on female plants demonstrated in this work is useful for producing seeds that give rise to only female plants. This technique is also useful for maintaining gynoecious lines.  相似文献   

11.
Addition of the ethylene antagonist, silver nitrate (AgNO3), into callus induction medium significantly enhanced embryogenic callus production (both induction frequency and callus growth) of field-collected male immature inflorescence cultures of buffalograss NE84-45-3 and 'Texoka'. No stimulatory effect of AgNO3 was observed on embryogenic callus induction for female immature inflorescence culture of a female genotype `609' and `Texoka'. Calli initiated on AgNO3-containing media had more shoot-regenerating calli than those initiated on AgNO3-free media, when they were transferred to the regeneration media. Benzyladenine at 2.2 μM gave the best response for regeneration, regardless of the callus source. Although average number of shoots regenerated per callus was lower for calli initiated on AgNO3-containing media, total number of shoots regenerated was higher. The stimulatory effect, however, was environment and genotype dependent. While the addition of AgNO3 significantly stimulated embryogenic callus induction of NE84-45-3 immature inflorescences collected in Fall 1995 and May 1997, it only slightly increased the embryogenic callus induction frequencies in May 1996 when rainy conditions occurred. For male inflorescences of `Texoka' collected in early May, AgNO3 significantly enhanced embryogenic callus production consistently over the two-year period (1996, 1997). Published as Journal Series No. 1351, Agricultural Research Division, University of Nebraska. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Summary Ethylene is a plant growth regulator that is known to influence in vitro morphogenesis. This study investigated the effects of three ethylene inhibitors, silver nitrate (AgNO3), 2,5-norbornadiene, and cobalt chloride (CoCl2), on the regeneration of cowpea from cotyledon explants. Significant increases in the percentage of regeneration occurred as a result of adding either 50 μM AgNO3 or 100 μM 2,5-norbornadiene. The number of shoots produced per explant was enhanced by adding 25 μM CoCl2 or 100 μM norbornadiene. Maximum shoot elongation was obtained with 25 μM of either CoCl2 or norbornadiene. The effect of the duration of exposure to AgNO3 was also determined. The greatest percent regeneration was obtained with the addition of 60 μM AgNO3 either to both the initiation and regeneration stages, or to only the regeneration stage. The promotive effects on organogenesis in response to ethylene inhibitors suggests an important role for ethylene in the process of in vitro morphogenesis of cowpea and may contribute to its normally low regeneration frequency.  相似文献   

13.
Embryo production from anther culture of three poorly respondingBrussels sprouts genotypes was increased in 10 out of 13 experimentsby the inclusion of the ethylene antagonist silver nitrate (AgNO3)in the medium. When applied to a normally responsive genotype,AgNO3 increased embryo yield in only one of three experiments.At only one concentration in one of the 16 experiments, didAgNO3 inhibit embryogenesis. Silver nitrate, anther culture, Brassica oleracea, ethylene  相似文献   

14.
Pelargonium × hortorum ‘Grand Prix’ which is susceptible to leaf yellowing and ‘Bergpalais’ which is not susceptible to leaf yellowing were chosen for the experiments. Ethylene production and action as well as the associated morphological response of Pelargonium shoots grown in the presence of a precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid (ACC), ethylene inhibitors: α-aminooxyacetic acid (AOA) and silver nitrate (AgNO3) and different cytokinins: (meta-topolin) (mT) or 6-benzylaminopurine (BAP) were studied. It was found that ‘Grand Prix’ was more sensitive to ethylene than ‘Bergpalais’ and it showed the leaf yellowing in response to 0.1 mg l?1 ACC. Moreover, it was noted that ACC added separately or together with cytokinin influenced Pelargonium morphogenesis. Depending on the concentration of ACC (0.1–2.0 mg l?1), it either stimulated or inhibited shoot and root formation as well as the growth of shoots and leaf blades. ACC-induced leaf yellowing in ‘Grand Prix’ was effectively inhibited by mT. In contrast, BAP did not enhance shoot quality. Simultaneously, the presence of mT in the medium resulted in up to a twofold increase in the ethylene production by ‘Grand Prix’ shoots throughout the culture period compared with the shoots growing on the BAP-medium. The inhibitor of ethylene action (AgNO3) added with cytokinin prevented the yellowing of Pelargonium shoots, but simultaneously influenced the formation of mature shoots with limited long-term multiplication potential. The shoots of P. × hortorum ‘Grand Prix’ treated with AgNO3 and mT emitted two- and sevenfold more ethylene after 11th and 21st day of culture compared with those treated with AgNO3 and BAP. It is suggested that mT inhibits the early senescence of Pelargonium in vitro by decreasing its sensitivity to ethylene.  相似文献   

15.
The possible involvement of ethylene in in vitrorooting of faba bean (Vicia faba L.) shootsregenerated on medium containing thidiazuron wasinvestigated. The effects of the ethylene precursor1-aminocyclopropane-1-carboxylic acid (ACC) and threeethylene inhibitors, silver nitrate (AgNO3),acetyl salicylic acid (ASA) and cobalt chloride(CoCl2) on root formation were tested in vitrousing TDZ-induced shoots of faba bean accession 760.ACC inhibited root formation. In contrast, ethyleneinhibitors promoted root formation, AgNO3 at theappropriate concentrations enhanced root emergence andincreased root number per shoot, root growth rate, androot length. Both CoCl2 and ASA at theappropriate concentrations increased rootingefficiency. These promotive effects may result from areduction in ethylene concentration or inhibition ofethylene action. The results offer a new approach toimprove the rooting efficiency of TDZ-induced shootsof faba bean and possibly of other plant species.  相似文献   

16.
The effects of ethylene inhibitors (silver nitrate – AgNO3 and silver thiosulphate – Ag2S2O3 as inhibitors of ethylene activity, cobalt chloride – CoCl2 as inhibitor of ethylene biosynthesis) and ethylene stimulator (aminocyclopropane-1-carboxylic acid – ACC) were studied on the growth of cauliflower (Brassica oleracea L.) seedlings cultured in closed vessels (60 cm3). The addition of ethylene inhibitors have significant stimulatory effects on the growth and development of seedlings and the effects were greatest with 10 μM AgNO3, the fresh weight of leaves was 2.6×, and the leaf area 2.8× those of the control (no additives). The effects of various methods of ventilation (humidity-induced convective through-flow ventilation, diffusive ventilation and sealed condition) on the growth and physiology of in vitrocauliflower seedlings were also investigated. The seedlings were cultured either in the presence or absence of AgNO3 (inhibitors of ethylene activity) and ACC (a precursor). Ethylene and CO2 levels in the head-space of the culture vessels were monitored. The humidity-induced through-flow ventilation system has shown to be effective for improving growth, leaf chlorophyll content and the rate of net photosynthesis and preventing symptoms of hyperhydricity, such as leaf epinasty, and franginess, reduction of leaf area etc. In contrast, the results also indicated that the sealing of culture vessels could have serious inhibitory effects on growth and development, induce hyperhydricity and reduce leaf chlorophyll content. In the light period, CO2 depletion occurred in the head-space of the sealed vessels (ca. 40 μl l-1), the CO2 concentration increased with increasing efficiency of the ventilation. No ethylene accumulation was noticed in the head-space of the culture vessels when humidity-induced throughflow ventilation was applied; however, high ethylene accumulation occurred in sealed vessels. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The application of 10–4 M GA3 to preclimacteric carnation flowers delayed senescence, climateric ethylene production reduced the rate of loss in fresh weight of intact flowers and the decrease in moisture content of the petals. The loss in flower fresh weight commenced prior to the ethylene climacteric. The increased membrane permeability which was observed when intact, control flowers were half opened, was delayed by GA3 application. This effect was only significant when GA3 was applied to young flowers. In addition to slowing down the loss in fresh mass, GA3 inhibited ethylene production by the style and stigma. The increase in ovary dry weight and chlorophyll content and the associated decrease in petal dry weight was slowed down by GA3 but not arrested, this despite reduced ethylene production by the ovary. It is proposed that a decline in endogenous gibberellin may be a correlative event associated with the onset of the senescence process in carnation flowers.Abbreviations GA3 gibberellic acid - STS silver thiosulphate  相似文献   

18.
The aim of this study was to evaluate the influence of ethylene-releasing (ACC, Ethephon, Methionine) and -inhibiting (cobalt chloride, silver thiosulfate) compounds on ethylene production and shoot organogenesis of nodal segments, where buds were completely removed, from mature tissues of Citrus limon, Fino 49 and Verna 51 cultivars. The addition of ACC to the culture medium produced a very significant decrease of the regeneration. These results were directly related to the ethylene levels measured in the atmosphere inside the tube. Similar results were observed with ethephon and methionine; the gradual increase in ethylene levels in the tubes, with increasing ethylene-releasing compounds in the culture medium, agrees with the decrease in the regeneration rate observed, but the effect was lower than with ACC. When cobalt chloride (CoCl2) was added to the culture medium, contrary to what was expected, the regeneration decreased in both cultivars and this decreasing was not related with the increase in ethylene production. These observations matched the occurrence of yellowish necrotic explants increasing the concentration of cobalt chloride, probably because of a toxic effect on lemon explants. The increase of silver thiosulfate (STS) in the culture medium enhanced the regeneration percentage in both Verna 51 and Fino 49 cultivars. Nevertheless, ethylene levels increased proportionally with the STS concentration and the regeneration rate. These results may be explained since the effects produced by the high ethylene levels measured in STS experiments were blocked by Ag+ ions, thereby increasing the regeneration percentage. Media to which STS was added produced the highest regeneration percentages. The results obtained in this study showed that ethylene plays an important role in the organogenesis of mature explants of C. limon.  相似文献   

19.
This study explores the unique growth-regulatory roles of two naturally occurring auxins, indole-3-acetic acid (IAA) and 4-chloroindole-3-acetic acid (4-Cl-IAA), and their interactions with gibberellin (GA) during early pea (Pisum sativum L.) fruit development. We have previously shown that 4-Cl-IAA can replace the seed requirement in pea pericarp growth (length and fresh weight), whereas IAA had no effect or was inhibitory. When applied simultaneously, gibberellin (GA3 or GA1) and 4-Cl-IAA had a synergistic effect on pericarp growth. In the present study, we found that simultaneous application of IAA and GA3 to deseeded pericarps inhibited GA3-stimulated growth. The inhibitory effect of IAA on GA-stimulated growth was mimicked by treatment with ethephon (ethylene releasing agent), and the inhibitory effects of IAA and ethylene on GA-mediated growth were reversed by silver thiosulfate (STS), an ethylene action inhibitor. Although pretreatment with STS could retard senescence of IAA-treated pericarps, STS pretreatment did not lead to IAA-induced pericarp growth. Although 4-Cl-IAA stimulated growth whereas IAA was ineffective, both auxins induced similar levels of ethylene evolution. However, only 4-Cl-IAA-stimulated growth was insensitive to the effects of ethylene. Gibberellin treatment did not influence the amount of ethylene released from pericarps in the presence or absence of either auxin. We propose a growth regulatory role for 4-Cl-IAA through induction of GA biosynthesis and inhibition of ethylene action. Additionally, ethylene (IAA-induced or IAA-independent) may inhibit GA responses under physiological conditions that limit fruit growth.  相似文献   

20.
Three compounds known to inhibit ethylene synthesis and/or action were compared for their ability to delay senescence and abscission of bean explants (Phaseolus vulgaris L. cv Contender). Aminoethoxyvinyl-glycine (AVG), AgNO3, and sodium benzoate were infiltrated into the petiole explants. Their effect on abscission was monitored by measuring the force required to break the abscission zone, and their effect on senescence was followed by measuring chlorophyll and soluble protein in the distal (pulvinus) sections. AVG at concentrations between 1 and 100 micromolar inhibited ethylene synthesis by about 80 to 90% compared to the control during sampling periods of 24 and 48 hours after treatment. This compound also delayed the development of abscission and senescence. Treatment with AgNO3 at concentrations between 1 and 100 micromolar progressively reduced ethylene production, but to a lesser extent than AVG. The effects of AgNO3 on senescence and abscission were quite similar to those of AVG. Sodium benzoate at 50 micromolar to 5 millimolar did not inhibit ethylene synthesis during the first 24 hours, but appreciably inhibited ethylene synthesis 48 hours after treatment. It also delayed the development of abscission and senescence. The effects of AVG, Ag+, and sodium benzoate suggest that ethylene could play a major role in both the senescence induction phase and the separation phase in bean explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号