首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor beta (TGF-beta) enhances replication and bone matrix protein synthesis and associates with distinct binding sites in osteoblast-enriched cultures from fetal rat bone. In the organism high levels of or sustained exposure to glucocorticoids alters bone cell activity and decreases bone mass, effects that may be mediated in part by changes in local TGF-beta actions in skeletal tissue. Preexposure of osteoblast-enriched cultures to 100 nM cortisol reduced the stimulatory effects of TGF-beta 1 on DNA and collagen synthesis by 40 to 50%. Binding studies showed that cortisol moderately enhanced total TGF-beta 1 binding, but chemical cross-linking and polyacrylamide gel electrophoretic analysis revealed an increase only within Mr 250,000 (type III) TGF-beta-binding complexes, which are thought to represent extracellular TGF-beta storage sites. In contrast, a decrease in TGF-beta 1 binding was detected in Mr 65,000 (type I) and 85,000 (type II) complexes, which have been implicated as signal-transducing TGF-beta receptors. Our present studies therefore indicate that glucocorticoids can decrease the anabolic effects of TGF-beta 1 in bone, and these may occur in part by a redistribution of its binding toward extracellular matrix storage sites. Alterations of this sort could contribute to bone loss associated with glucocorticoid excess.  相似文献   

2.
Fractionation of female rat serum or plasma on Sephadex G-200 revealed the presence of an activity stimulatory for hepatocyte DNA synthesis. Treatment of female rats with the liver tumor promoter ethinyl estradiol (EE) at 2.5 micrograms/day caused a 1.6 fold increase in the level of this activity at 24 hr in both serum and plasma. The stimulatory activity had a molecular weight of 135 kD, was sensitive to trypsin and heating and was not inhibited by the antiestrogen tamoxifen or antibody to epidermal growth factor (EGF). However, the pooled active fractions from EE-treated rats competed to a greater extent than comparable fractions from control rats for specific [125I]-EGF binding to rat liver membranes. These results demonstrate that treatment of female rats with EE, under conditions known to stimulate liver growth, caused an increase in level of a factor(s) stimulatory for hepatocyte DNA synthesis and whose activity may be mediated through the EGF receptor.  相似文献   

3.
Primary fetal rat liver cells cultured in medium deficient in, but not free of, arginine in the presence of dialyzed fetal calf serum grow until the final cell density is attained and cells become quiescent in the Go phase of the cell cycle. When growing cells are transferred into arginine free medium, cells become reversibly arrested in Go. Fetal rat liver cells can be induced to synthesize DNA by addition of high levels of arginine to serum free medium. Low arginine levels in the culture medium do not induce cell growth unless serum is present. Serum stimulates arginine uptake in fetal rat liver cells suggesting that serum growth factor(s) act by increasing intracellular arginine levels high enough to initiate the growth cycle. Fractionation of fetal calf serum by gel filtration on G-200 Sephadex yields a partially purified arginine uptake stimulating activity which is eluted from the column in the same fractions that contain fetal rat liver cell growth promoting activity. Insulin induces DNA synthesis in quiescent fetal rat liver cells. Glucagon reverses the stimulatory effects of insulin. N-6,O-2-Dibutyryl adenosine 3:5-cyclic monophosphoric acid (But2c-AMP) (10-minus4 M) and theophilline (10-minus3 M) inhibit arginine uptake and the initiation of DNA synthesis by serum. The role of arginine in the control of DNA synthesis in fetal rat liver cells and the mechanism of action of serum growth factors are discussed.  相似文献   

4.
Continued high levels of phenylalanine hydroxylase in cultured H4-II-E-C3 rat hepatoma cells require either serum or glucocorticoids in the culture medium. Upon withdrawal of serum, cellular phenylalanine hydroxylase levels decay exponentially with a half-life of 22 hours for about 60 hours, after which time a low, constant enzyme content persists for at least 96 hours. This decline of phenylalanine hydroxylase is fully reversible; normal enzyme levels are restored in a time- and dosage-dependent fashion upon addition of serum to basal cultures. The serum factor is nondialyzable and moderately heat-stable. The stimulation by serum of the phenylalanine hydroxylas content of basal cultures is blocked by 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide and requires ongoing cellular protein synthesis. When added to the enzyme-assay mixture in vitro, serum does not alter the phenylalanine hydroxylase activity of extracts from basal cultures. Three lines of evidence suggest that serum contains a nonsteroidal phenylalanine hydroxylase stimulatory components(s): (a) glucocorticoid antagonists inhibit less than one-half of the biological activity of serum; (b) exhaustive extraction of endogenous serum glucocorticoids with charcoal reduces the activity of serum to about one-half of control values; and (c) the stimulatory effects of charcoal reduces the values; and (c) the stimulatory effects of charcoal-extracted serum and hydrocortisone are additive. The phenylalanine hydroxylase stimulatory activities of the charcoal-extracted sera from four mammalian species and from three stages in development in one mammalian species are comparable. A survey of partially purified preparations of a number of known hormones failed to reveal any one capable of elevating the phenylalanine hydroxylas levels of basal cultures in a manner comparable to that of charcoal-extracted serum.  相似文献   

5.
The present studies show for the first time that demineralized bone re-calcifies rapidly when incubated at 37 degrees C in rat serum: re-calcification can be demonstrated by Alizarin Red and von Kossa stains, by depletion of serum calcium, and by uptake of calcium and phosphate by bone matrix. Re-calcification is specific for the type I collagen matrix structures that were calcified in the original bone, with no evidence for calcification in periosteum or cartilage. Re-calcification ceases when the amount of calcium and phosphate introduced into the matrix is comparable to that present in the original bone prior to demineralization, and the re-calcified bone is palpably hard. Re-calcified bone mineral is comparable to the original bone mineral in calcium to phosphate ratio and in Fourier transform infrared and x-ray diffraction spectra. The serum activity responsible for re-calcification is sufficiently potent that the addition of only 1.5% serum to Dulbecco's modified Eagle's medium causes bone re-calcification. This putative serum calcification factor has an apparent molecular mass of 55-150 kDa and is inactivated by trypsin or chymotrypsin. The serum calcification factor must act on bone for 12 h before re-calcification can be detected by Alizarin Red or von Kossa staining and before the subsequent growth of calcification will occur in the absence of serum. The speed, matrix-type specificity, and extent of the serum-induced re-calcification of demineralized bone suggest that the serum calcification factor identified in these studies may participate in the normal calcification of bone.  相似文献   

6.
Summary Induction of hepatocyte DNA synthesis in culture by cyproterone acetate (CPA), a potent hepatomitogen in vivo, was studied. Adult rat hepatocytes were grown on collagen gels in primary culture for 3 to 10 d. Epidermal growth factor (EGF) was used as a model inducer to establish appropriate culture conditions. (a) In serum-free medium EGF stimulated a wave of DNA synthesis in 10 to 30% of the hepatocytes. CPA had only a weak effect. (b) Increasing concentrations of newborn bovine serum (NBS) at 5 to 95% progressively inhibited the stimulatory effect of EGF. A similar inhibition was obtained by adding bovine serum albumin; 20% NBS, however, had a slightly stimulatory effect on the induction of DNA synthesis by CPA. (c) Portal rat serum (RS) at concentration of 5 to 95% markedly stimulated DNA synthesis, a plateau being reached between 20 and 95%. EGF had a distinct enhancing effect on DNA synthesis in the presence of 5 and 20% RS but not at 50 and 95%. CPA stimulated DNA synthesis in the presence of 20, 50, and 95% RS in a synergistic way. (d) Mitoses were found after treatment with EGF or with CPA. These results show that CPA can induce DNA synthesis in cultured hepatocytes and that RS contains factors facilitating the response to CPA. This study was supported by Gesellschaft für Strahlen-und Umweltforschung mbH, München, Germany.  相似文献   

7.
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-beta (TGF-beta1 and TGF-beta2) and TGF-beta-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-beta1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-beta1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-beta1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and beta-glycerophosphate (beta-GP). Although rhTGF-beta1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-beta1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-beta1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.  相似文献   

8.
Several IL 3-dependent murine bone marrow-derived cell lines can be stimulated to grow with antigen-antibody (Ag.Ab) complexes. The Ag.Ab complexes induced lymphokine gene expression and the synthesis of IL 2, GM-CSF, IL 3, and BSF-1 (IL 4). The lymphokines produced by these IL 3-dependent cells appeared to stimulate their own growth, as both IL 3 and BSF-1 (IL 4) stimulated the growth of IL 3-dependent cells. Ag.Ab complexes also stimulate the growth of primary cultures of bone marrow cells that have been previously activated with IL 3. Normal bone marrow, IL 2-, and GM-CSF-dependent bone marrow cell lines could bind Ag.Ab complexes, but binding did not result in the induction of lymphokine synthesis or cell growth. Hyperimmune serum from mice also stimulated lymphokine synthesis and cell growth in IL 3-dependent cells, and the stimulatory activity was removed by treatment with Staphylococcus aureus protein A, suggesting the presence of Ag.Ab complexes.  相似文献   

9.
The synthesis of osteocalcin, the major non-collagenous protein of adult bone, was examined in cultures of 21-day fetal rat calvariae. Osteocalcin was measured by a sensitive and specific radioimmunoassay. Osteocalcin concentration in unincubated calvariae was 14.5 +/- 0.5 ng/calvaria. After incubation, there was a continuous increase in bone and medium osteocalcin, and by 96 h the values were about 100% higher than in unincubated calvariae. 1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3) at 10(-11) to 10(-8)M increased osteocalcin synthesis. The effect appeared as early as 6 h after treatment and was primarily observed in the culture medium, and 1,25-(OH)2D3 stimulated osteocalcin up to 9-fold by 96 h. Concomitant with the effect on osteocalcin synthesis, 1,25-(OH)2D3 inhibited collagen synthesis. Cycloheximide markedly decreased osteocalcin concentrations in control and 1,25-(OH)2D3-treated calvariae. The stimulatory effect on osteocalcin synthesis was specific to 1,25-(OH)2D3 since 24,25-dihydroxyvitamin D3, parathyroid hormone, epidermal growth factor, and prostaglandin E2 did not stimulate osteocalcin synthesis, and parathyroid hormone and epidermal growth factor opposed the 1,25-(OH)2D3 stimulatory effect. Insulin did not alter osteocalcin concentration by itself but enhanced the effect of 1,25-(OH)2D3. In conclusion, 1,25-(OH)2D3 stimulates osteocalcin synthesis in cultures of normal calvariae, but this effect is not shared by other hormones known to affect bone metabolism.  相似文献   

10.
11.
Our recent studies suggested that decreased collagen synthesis in bone and cartilage of scorbutic guinea pigs was not related to ascorbate-dependent proline hydroxylation. The decrease paralleled scurvy-induced weight loss and reduced proteoglycan synthesis. Those results led us to propose that the effects of ascorbate deficiency on extracellular matrix synthesis were caused by changes in humoral factors similar to those that occur in fasting. Here we present evidence for this proposal. Exposure of chick embryo chondrocytes to scorbutic guinea pig serum, in the presence of ascorbate, led to effects on extracellular matrix synthesis similar to those seen in scorbutic animals. The rates of collagen and proteoglycan synthesis were reduced to approximately 30-50% of the levels in cells cultured in normal guinea pig serum plus ascorbate, but proline hydroxylation and procollagen secretion were unaffected. Similar results were obtained with serum from fasted guinea pigs supplemented in vivo with ascorbate. The growth rate of the chondrocytes was not significantly affected by scorbutic guinea pig serum.  相似文献   

12.
Osteocalcin detected from serum samples is considered a specific marker of osteoblast activity and bone formation rate. However, osteocalcin embedded in bone matrix must also be released during bone resorption. To understand the contribution of each type of bone cell in circulating osteocalcin levels, we used immunoassays detecting different molecular forms of osteocalcin to monitor bone resorption in vitro. Osteoclasts were obtained from rat long bones and cultured on bovine bone slices using osteocalcin-depleted fetal bovine serum. In addition, human osteoclasts differentiated from peripheral blood mononuclear cells were used. Both rat and human osteoclasts released osteocalcin from bovine bone into medium. The amount of osteocalcin increased in the presence of parathyroid hormone, a stimulator of resorption, and decreased in the presence of bafilomycin A1, an inhibitor of resorption. The amount of osteocalcin in the medium correlated with a well characterized marker of bone resorption, the C-terminal telopeptide of type I collagen (r > 0.9, p < 0.0001). The heterogeneity of released osteocalcin was determined using reverse phase high performance liquid chromatography, and several molecular forms of osteocalcin, including intact molecule, were identified in the culture medium. In conclusion, osteocalcin is released from the bone matrix during bone resorption as intact molecules and fragments. In addition to the conventional use as a marker of bone formation, osteocalcin can be used as a marker of bone resorption in vitro. Furthermore, bone matrix-derived osteocalcin may contribute to circulating osteocalcin levels, suggesting that serum osteocalcin should be considered as a marker of bone turnover rather than bone formation.  相似文献   

13.
14.
Kaempferol 3-neohesperidoside is one of the several compounds that have been reported to have insulin-like properties in terms of glucose lowering. We studied the effect of kaempferol 3-neohesperidoside in glycogen synthesis in rat soleus muscle through the incorporation of 14C-d-glucose in glycogen. Kaempferol 3-neohesperidoside stimulates glycogen synthesis in rat soleus muscle by approximately 2.38-fold. Insulin at 100 nM showed a stimulatory effect on glycogen synthesis when compared with the control group. The stimulatory effect of kaempferol 3-neophesperidoside on glycogen synthesis was inhibited by wortmannin, the phosphatidylinositol 3-kinase (PI3K) inhibitor, and enhanced by lithium chloride, a glycogen synthase kinase 3 (GSK-3) inhibitor. Moreover, the stimulatory effect of kaempferol 3-neohesperidoside was also nullified by PD98059, a specific inhibitor of mitogen-activated protein kinase (MEK) and by calyculin A, an inhibitor of protein phosphatase 1 (PP1) activity. It was concluded that the PI3K – GSK-3 pathway and MAPK – PP1 pathway are involved in the stimulatory kaempferol 3-neohesperidoside effect on glycogen synthesis in rat soleus muscle.  相似文献   

15.
A continuous source of osteoblasts for normal bone maintenance, as well as remodeling and regeneration during fracture repair, is ensured by the mesenchymal osteoprogenitor stem cells of the bone marrow (BM). The differentiation and maturation of osteoprogenitor cells into osteoblasts are thought to be modulated by transforming growth factors-β (TGF-β1 and TGF-β2) and TGF-β-related bone morphogenetic proteins (BMPs). To define the responses of mesenchymal osteoprogenitor stem cells to several growth factors (GFs), we cultured Fischer 344 rat BM cells in a collagen gel medium containing 0.5% fetal bovine serum for prolonged periods of time. Under these conditions, survival of BM mesenchymal stem cells was dependent on the addition of GFs. Recombinant hTGF-β1-F2, a fusion protein engineered to contain an auxiliary collagen binding domain, demonstrated the ability to support survival colony formation and growth of the surviving cells, whereas commercial hTGF-β1 did not. Initially, cells were selected from a whole BM cell population and captured inside a collagen network, on the basis of their survival response to added exogenous GFs. After the 10-day selection period, the surviving cells in the rhTGF-β1-F2 test groups proliferated rapidly in response to serum factors (10% FBS), and maximal DNA synthesis levels were observed. Upon the addition of osteoinductive factors, osteogenic differentiation in vitro was evaluated by the induction of alkaline phosphatase (ALP) expression, the production of osteocalcin (OC), and the formation of mineralized matrix. Concomitant with a down-regulation of cell proliferation, osteoinduction is marked by increased ALP expression and the formation of colonies that are competent for mineralization. During the induction period, when cells organize into nodules and mineralize, the expression of OC was significantly elevated along with the onset of extracellular matrix mineralization. Differentiation of BM mesenchymal stem cells into putative bone cells as shown by increased ALP, OC synthesis, and in vitro mineralization required the presence of specific GFs, as well as dexamethasone (dex) and β-glycerophosphate (β-GP). Although rhTGF-β1-F2-selected cells exhibited the capacity to mineralize, maximal ALP activity and OC synthesis were observed in the presence of rhBMPs. We further report that a novel rhTGF-β1-F2 fusion protein, containing a von Willebrand's factor-derived collagen binding domain combined with a type I collage matrix, is able to capture, amplify, and stimulate the differentiation of a population of cells present in rat BM. When these cells are subsequently implanted in inactivated demineralized bone matrix (iDBM) and/or diffusion chambers into older rats they are able to produce bone and cartilage. The population of progenitor cells captured by rhTGF-β1-F2 is distinct from the committed progenitor cells captured by rhBMPs, which exhibit a considerably more differentiated phenotype.  相似文献   

16.
The effect of serum factors other than luteinizing hormone on Leydig cell testosterone secretion was examined using an in vitro bioassay system based on the stimulation of purified adult rat Leydig cells during a 20 h incubation in the presence of a maximal dose of human chorionic gonadotrophin (hCG). Charcoal-extracted serum and testicular interstitial fluid (IF) from normal adult male rats were separated into lipoprotein and lipoprotein-deficient fractions by density ultracentrifugation. Stimulatory bioactivity was found in the lipoprotein fraction of both serum and IF, although the levels of lipoprotein and corresponding bioactivity recovered from IF were significantly lower (25%) than those of serum. There was no difference between the effects of serum lipoproteins on Leydig cell testosterone production stimulated by either hCG or dibutyryl cAMP. In time-course studies, the serum lipoprotein fraction had no effect on hCG-stimulated testosterone production in vitro at 3.0 or 6.0 h, but partially prevented the normal decline in hCG-stimulated testosterone production after 6.0 h. In contrast, unfractionated serum was stimulatory at all time-points. In the absence of hCG, the lipoprotein fraction was stimulatory at both 6.0 and 20 h, although not at 3.0 h. The lipoprotein-deficient protein fraction of serum had no effect on hCG-stimulated testosterone production alone, but significantly enhanced the bioactivity of the lipoprotein fraction, and caused a dose-dependent stimulation of testosterone production in the presence of a constant concentration of serum lipoproteins. Both a stimulatory peak of activity (apparent MW 40-80 kDa), and a large MW (> 100 kDa) inhibitor of testosterone production were identified in serum after fractionation by gel filtration (Sephadex G-100). The data indicate that (i) the stimulatory effect of serum on short-term hCG-stimulated Leydig cell testosterone production in vitro is predominantly due to the serum lipoprotein fraction, possibly by providing additional precursors for testosterone synthesis, (ii) the biological activity of the lipoproteins is influenced by both stimulatory and inhibitory serum proteins in addition to luteinizing hormone, and (iii) that serum lipoproteins may be involved in supporting Leydig cell steroidogenesis in vivo.  相似文献   

17.
In chronic rheumatoid arthritis, mononuclear cells (MC) accumulate in the subchondral bone and form a prominent part of both destructive lesions and repair reactions. A fraction from human bone matrix extracts (BME) stimulated glycosaminoglycan (gag) and glycoprotein synthesis by fibroblastic cells but its effects on MC metabolism had not been studied. A method was established for the study of incorporation of radioactive precursors into total protein, IgG and gag synthesized and secreted by peripheral blood MC cultured in microwells in the presence or absence of Concanavalin A (ConA). Relatively low concentrations of BME suppressed spontaneous synthesis of radioactive IgG (protein A bound) and TCA precipitable protein but had little effect on gag synthesis. In general, stimulation of the cultures with ConA overcame the inhibitory effects on protein synthesis by the BME. A large stimulation of gag synthesis induced by ConA was not affected by BME. The interactions between the BME and the stimulatory effect of ConA on DNA synthesis were studied in detail and were found to be complex, not immunologically specific and appeared to be due to binding of lectin by the carbohydrate moieties of the glycoproteins in the BME. On the basis of a model of the lectin-BME interaction, the hypothesis is postulated that the carbohydrate moieties of subchondral bone glycoproteins may have the capacity to act as a solid state "trap" for certain circulating antigens which may then also interact with surface glycoproteins of the MC accumulating in the subchondral bone. The physiological role of gag synthesis by MC is not known.  相似文献   

18.
J Kolena 《Hormone research》1976,7(3):152-157
The rat ovary during the 1st postnatal week is unresponsive to luteinizing hormone (LH), but responds to prostaglandin E1 with increase of cyclic adenosine 3',5'-monophosphate synthesis. In the present experiments unresponsiveness of ovaries of 6-day-old rats to LH in synthesis of cAMP was effectively reversed by injection of depot estradiol and diethylstilbestrol on the 2nd and 4th postnatal day. Administration of testosterone, progesterone, deoxycorticosterone, pregnant mare's serum gonadotropin and human chronic gonadotropin had no stimulatory effect. The lack of response to LH also failed to be reversed when estradiol was injected 21 h before killing of the animals or the ovaries were preincubated with estradiol. These results suggest that the development of an ovarian cell system responsive to LH in newborn rat may be accelerated by long-term action of estradiol.  相似文献   

19.
The transfusion of blood is associated with long-term immunosuppression, which has been postulated to influence immunosurveillance and cancer cell killing. The mononuclear phagocyte synthesises large quantities of PGE2, and PGE2 has been shown to inhibit the activity of a range of immunocompetent cell types. The role of mononuclear phagocyte PGE2 synthesis in transfusion-associated immunosuppression, and the elements of transfused blood which control this immunosuppression, were investigated using a transfused rat model. A significant increase in macrophage PGE2 synthesis was detected 7 days after transfusion with blood and serum. The storage of blood for 24 h increased the stimulatory activity of transfused blood. The effects of storage and serum on macrophage PGE2 synthesis were greater than effects due to genetic differences between blood donor and recipient, and the serum effects indicated that a major factor activating PGE2-mediated immunosuppression in transfused subjects may be humoral in nature.  相似文献   

20.
We reported previously that a 32-36-kDa osteogenic protein purified from bovine bone matrix is composed of dimers of two members of the transforming growth factor (TGF)-beta superfamily: the bovine equivalent of human osteogenic protein-1 (OP-1) and bone morphogenetic protein-2a, BMP-2a (BMP-2). In the present study, we produced the recombinant human OP-1 (hOP-1) in mammalian cells as a processed mature disulfide-linked homodimer with an apparent molecular weight of 36,000. Examination of hOP-1 in the rat subcutaneous bone induction model demonstrated that hOP-1 was capable of inducing new bone formation with a specific activity comparable with that exhibited by highly purified bovine osteogenic protein preparations. The half-maximal bone-inducing activity of hOP-1 in combination with a rat collagen matrix preparation was 50-100 ng/25 mg of matrix as determined by the calcium content of day 12 implants. Evaluation of hOP-1 effects on cell growth and collagen synthesis in rat osteoblast-enriched bone cell cultures showed that both cell proliferation and collagen synthesis were stimulated in a dose-dependent manner and increased 3-fold in response to 40 ng of hOP-1/ml. Examination of the expression of markers characteristic of the osteoblast phenotype showed that hOP-1 specifically stimulated the induction of alkaline phosphatase (4-fold increase at 40 ng of hOP-1/ml), parathyroid hormone-mediated intracellular cAMP production (4-fold increase at 40 ng of hOP-1/ml), and osteocalcin synthesis (5-fold increase at 25 ng of hOP-1/ml). In long-term (11-17 day) cultures of osteoblasts in the presence of beta-glycerophosphate and L(+)-ascorbate, hOP-1 markedly increased the rate of mineralization as measured by the number of mineral nodules per well (20-fold increase at 20 ng of hOP-1/ml). Direct comparison of TGF-beta 1 and hOP-1 in these bone cell cultures indicated that, although both hOP-1 and TGF-beta 1 promoted cell proliferation and collagen synthesis, only hOP-1 was effective in specifically stimulating markers of the osteoblast phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号