首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
•Background and Aims Animal-pollinated angiosperms have evolved a variety of signalling mechanisms to attract pollinators. Floral scent is a key component of pollinator attraction, and its chemistry modulates both pollinator behaviour and the formation of plant–pollinator networks. The neotropical orchid genus Gongora exhibits specialized pollinator associations with male orchid bees (Euglossini). Male bees visit orchid flowers to collect volatile chemical compounds that they store in hind-leg pouches to use subsequently during courtship display. Hence, Gongora floral scent compounds simultaneously serve as signalling molecules and pollinator rewards. Furthermore, because floral scent acts as the predominant reproductive isolating barrier among lineages, it has been hypothesized that chemical traits are highly species specific. A comparative analysis of intra- and inter-specific variation of floral scent chemistry was conducted to investigate the evolutionary patterns across the genus.•Methods Gas chromatography–mass spectrometry (GC-MS) was used to analyse the floral scent of 78 individuals belonging to 28 different species of Gongora from two of the three major lineages sampled across the neotropical region. Multidimensional scaling and indicator value analyses were implemented to investigate the patterns of chemical diversity within and among taxonomic groups at various geographic scales. Additionally, pollinator observations were conducted on a sympatric community of Gongora orchids exhibiting distinct floral scent phenotypes.•Key Results A total of 83 floral volatiles, mainly terpenes and aromatic compounds, were detected. Many of the identified compounds are common across diverse angiosperm families (e.g. cineole, eugenol, β-ocimene, β-pinene and terpinen-4-ol), while others are relatively rare outside euglossine bee-pollinated orchid lineages. Additionally, 29 volatiles were identified that are known to attract and elicit collection behaviour in male bees. Floral scent traits were less variable within species than between species, and the analysis revealed exceptional levels of cryptic diversity. Gongora species were divided into 15 fragrance groups based on shared compounds. Fragrance groups indicate that floral scent variation is not predicted by taxonomic rank or biogeographic region.•Conclusions Gongora orchids emit a diverse array of scent molecules that are largely species specific, and closely related taxa exhibit qualitatively and quantitatively divergent chemical profiles. It is shown that within a community, Gongora scent chemotypes are correlated with near non-overlapping bee pollinator assemblies. The results lend support to the hypothesis that floral scent traits regulate the architecture of bee pollinator associations. Thus, Gongora provides unique opportunities to examine the interplay between floral traits and pollinator specialization in plant–pollinator mutualisms.  相似文献   

2.
Background and AimsColour pattern is a key cue of bee attraction selectively driving the appeal of pollinators. It comprises the main colour of the flower with extra fine patterns, indicating a reward focal point such as nectar, nectaries, pollen, stamens and floral guides. Such advertising of floral traits guides visitation by the insects, ensuring precision in pollen gathering and deposition. The study, focused in the Southwest Australian Floristic Region, aimed to spot bee colour patterns that are usual and unusual, missing, accomplished by mimicry of pollen and anthers, and overlapping between mimic-model species in floral mimicry cases.MethodsFloral colour patterns were examined by false colour photography in 55 flower species of multiple highly diverse natural plant communities in south-west Australia. False colour photography is a method to transform a UV photograph and a colour photograph into a false colour photograph based on the trichromatic vision of bees. This method is particularly effective for rapid screening of large numbers of flowers for the presence of fine-scale bee-sensitive structures and surface roughness that are not detectable using standard spectrophotometry.Key ResultsBee- and bird-pollinated flowers showed the expected but also some remarkable and unusual previously undetected floral colour pattern syndromes. Typical colour patterns include cases of pollen and flower mimicry and UV-absorbing targets. Among the atypical floral colour patterns are unusual white and UV-reflecting flowers of bee-pollinated plants, bicoloured floral guides, consistently occurring in Fabaceae spp., and flowers displaying a selective attractiveness to birds only. In the orchid genera (Diuris and Thelymitra) that employ floral mimicry of model species, we revealed a surprising mimicry phenomenon of anthers mimicked in turn by model species.ConclusionThe study demonstrates the applicability of ‘bee view’ colour imaging for deciphering pollinator cues in a biodiverse flora with potential to be applied to other eco regions. The technique provides an exciting opportunity for indexing floral traits on a biome scale to establish pollination drivers of ecological and evolutionary relevance.  相似文献   

3.

Background and Aims

Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined.

Methods

Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles.

Key Results

Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps.

Conclusions

Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.  相似文献   

4.
Long‐term variation in the population density of honey bees Apis mellifera across landscapes has been shown to correlate with variation in the floral traits of plant populations in these landscapes, suggesting that variations in pollinator population density and foraging rates can drive floral trait evolution of their host plants. However, it remained to be determined whether this variation in plant traits is associated with adaptive variation in plant reproductive strategies under conditions of high and low pollinator densities. Here we conducted a reciprocal transplant experiment to examine how this variation in floral traits, under conditions of either high and low pollinator density, impacted seed production in the Tibetan lotus Saussurea nigrescens. In 2014 and 2015, we recorded the floral traits, pollinator visitation rates, and seed production of S. nigrescens populations grown in both home sites and foreign sites, where sites varied in honey bee population density. Our results demonstrated that the floral traits reflected those of their original population, regardless of their current location. However, seed production varied with both population origin and transplant site. Seed number was positively correlated with flower abundance in the pollinator‐rich sites, but with nectar production in the pollinator‐poor sites. Pollinator visitation rate was also positively correlated with flower number at pollinator‐rich sites, and with nectar volume at pollinator‐poor sites. Overall, the local genotype had higher seed production than nonlocal genotypes in home sites. However, when pollen is hand‐supplemented, plants from pollinator‐rich populations had higher seed production than plants from pollinator‐poor populations, regardless of whether they were transplanted to pollinator‐rich or ‐poor sites. These results suggest that the plant genotypic differences primarily drive variation in pollinator attraction, and this ultimately drives variation in seed: ovule ratio. Thus, our results suggest that flowering plant species use different reproductive strategies to respond to high or low pollinator densities.  相似文献   

5.
  • The association between plants and flower visitors has been historically proposed as a main factor driving the evolutionary change of both flower and pollinator phenotypes. The considerable diversity in floral morphology within the tribe Antirrhineae has been traditionally related to pollinator types. We used empirical data on the flower visitors from 59 Antirrhineae taxa from the literature and our own field surveys, which provide an opportunity to test whether flower phenotypes are reliable predictors of visitors and pollinator niches.
  • The degree of adjustment between eight key floral traits and actual visitors was explored by testing the predictive value of inferred pollinator syndromes (i.e. suites of floral traits that characterise groups of plant species related to pollination). Actual visitors and inferred pollinator niches (categorisation of visitors’ association using a modularity algorithm) were also explored using Linear Discriminant Analysis (LDA).
  • The bee pollinator niche is correctly classified for flowers with dull corolla colour, without nectar guides, as the most important predictor. Both predictive value and statistical classification prove useful in classifying Antirrhineae taxa and the bee pollinator niche, mostly as a consequence of the high proportion of genera and taxa with occluded corollas primarily visited by bees. Our predictive approach rendered a high Positive Predictive Value (PPV) of floral traits in the diagnosis of visitors/pollinator niches. In particular, a high PPV was found for bees as both visitors and forming pollinator niches. In addition, LDA showed that four pollinator niches are well defined based on floral traits.
  • The large number of species visited by bees irrespective of pollinator syndromes leads us to hypothesise their generalist pollinator role, despite the phenotypically specialised flowers of Antirrhineae.
  相似文献   

6.

Background  

Sexual selection theory predicts that males are limited in their reproductive success by access to mates, whereas females are more limited by resources. In animal-pollinated plants, attraction of pollinators and successful pollination is crucial for reproductive success. In dioecious plant species, males should thus be selected to increase their attractiveness to pollinators by investing more than females in floral traits that enhance pollinator visitation. We tested the prediction of higher attractiveness of male flowers in the dioecious, moth-pollinated herb Silene latifolia, by investigating floral signals (floral display and fragrance) and conducting behavioral experiments with the pollinator-moth, Hadena bicruris.  相似文献   

7.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

8.
Pollination is a requisite for sexual reproduction in plants and its success may determine the reproductive output of individuals. Pollinator preference for some floral designs or displays that are lacking or poorly developed in focal plants may constrain the pollination process. Foliar herbivory may affect the expression of floral traits, thus reducing pollinator attraction. Natural populations of the Andean species Alstroemeria exerens (Alstromeriaceae) in central Chile show high levels of foliar herbivory, and floral traits show phenotypic variation. In the present field study, we addressed the attractive role of floral traits in A. exerens and the effect of foliar damage on them. Particularly, we posed the following questions: (1) Is there an association between floral display and design traits and the number and duration of pollinator visits? and (2) Does foliar damage affect the floral traits associated with pollinator visitation? To assess the attractiveness of floral traits for pollinators, we recorded the number and duration of visits in 101 focal plants. To evaluate the effects of foliar damage on floral traits, 100 plants of similar size were randomly assigned to control or damage groups during early bud development. Damaged plants were clipped using scissors (50% of leaf area) and control plants were manually excluded from natural herbivores (<5% of leaf area eaten). During the peak of flowering, we recorded the number of open flowers, and estimated corolla and nectar guide areas. The number and duration of pollinator visits was statistically associated with floral design and display traits. Plants with larger displays, corollas and nectar guide areas received more visits. Visits lasted longer as display increases. In addition, foliar damage affected attractive traits. Damaged plants had fewer open flowers and smaller nectar guide areas. We conclude that foliar damage affects plant attractiveness for pollinators and hence may indirectly affect plant fitness.  相似文献   

9.
Geographic variation in floral morphology is often assumed to reflect geographic variation in pollinator communities and associated divergence in selective pressures. We studied populations of Nerine humilis (Amaryllidaceae) to assess whether geographic variation in floral form is the result of local adaptation to different pollinator communities. We first tested for associations between floral traits and visitor communities, and found that populations with similar floral morphologies were visited by similar insect communities. Mean style length in each population was also closely associated with the mean body length of the local visitor community. A reciprocal translocation experiment demonstrated that native phenotypes set more seed than translocated phenotypes. Single visitation experiments showed that native flowers received more pollen, and set more seed per visit, than introduced phenotypes in both populations. This suggests that the effectiveness of pollinator visits is determined by the degree of mechanical fit between flowers and visitors. We provide strong evidence that the observed among‐population variation in floral traits is an adaptive response to geographic variation in the pollinator community.  相似文献   

10.
Hegland SJ  Totland Ø 《Oecologia》2005,145(4):586-594
Knowledge about plant–plant interactions for pollinator service at the plant community level is still scarce, although such interactions may be important to seed production and hence the population dynamics of individual plant species and the species compositions of communities. An important step towards a better understanding of pollination interactions at the community level is to assess if the variation in floral traits among plant species explain the variation in flower visitation frequency among those species. We investigated the relative importance of various floral traits for the visitation frequency of all insects, and bumblebees and flies separately, to plant species by measuring the visitation frequency to all insect-pollinated species in a community during an entire flowering season. Visitation frequency was identified to be strongly positive related to the visual display area and the date of peak flowering of plant species. Categorical variables, such as flower form and symmetry, were important to the visitation frequency of flies only. We constructed floral similarity measures based on the species’ floral traits and found that the floral similarity for all species’ traits combined and the continuous traits separately were positively related to individual visitation frequency. On the other hand, plant species with similar categorical floral traits did not have similar visitation frequencies. In conclusion, our results show that continuous traits, such as flower size and/or density, are more important for the variation in visitation frequency among plant species than thought earlier. Furthermore, differences in visitation frequency among pollinator groups give a poor support to the expectations derived from the classical pollination syndromes.  相似文献   

11.
已知鸢尾属(Iris)植物约有280种且花部特征多变,具有较高的科研和观赏价值。尽管该属植物具备一定的克隆和自交繁殖能力,但传粉者介导的异交仍在其物种和遗传多样性的维持中发挥重要作用,然而目前仍缺乏对该属植物传粉者吸引及异交策略的系统性总结。本文首先简述了鸢尾属植物的传粉者种类及其适应动物传粉的花部构造,以明确其动物传粉概况。在此基础上,详细论述了该属植物如何通过视觉和嗅觉信号呈现花粉、花蜜和热量报酬供给等策略,实现对传粉者的有效吸引。在传粉者访问前后,鸢尾属植物还可通过合理的花展示、单花内雌雄功能的时空隔离以及传粉后的调控以实现最大程度的异交。此外,影响其传粉者吸引及异交的第三方生物和非生物因素,如食花者和资源配置,也应受到重视。今后随着相关研究的深入和技术手段的革新,研究者应针对鸢尾属植物传粉的热点或有争议的问题,采用花信号定量测定及异交率分子检测等先进技术,通过大范围的对比研究,深入揭示鸢尾属植物与传粉者的互作模式及其繁殖策略。  相似文献   

12.
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic compounds (VOCs) and, in turn, plant–pollinator interactions. In this study, we experimentally manipulated drought and herbivory for four forb species to determine effects of these treatments and their interactions on (1) visual plant traits traditionally associated with pollinator attraction, (2) floral VOCs, and (3) the visitation rates and community composition of pollinators. For all forbs tested, experimental drought universally reduced flower size and floral display, but there were species‐specific effects of drought on volatile emissions per flower, the composition of compounds produced, and subsequent pollinator visitation rates. Moreover, the community of pollinating visitors was influenced by drought across forb species (i.e. some pollinator species were deterred by drought while others were attracted). Together, these results indicate that VOCs may provide more nuanced information to potential floral visitors and may be relatively more important than visual traits for pollinator attraction, particularly under shifting environmental conditions.  相似文献   

13.
For alpine plant species, patterns of resource allocation to functional floral traits for pollinator attraction can be highly significant in adaptation to low pollinator abundance and consequent pollen limitation. Increased pollination can be achieved either through a larger floral display or production of more pollen rewards. In this study, variation in resource allocation to different components for pollinator attraction was studied along an altitudinal gradient in Trollius ranunculoides, an obligate self‐incompatible out‐crosser of the Qinghai–Tibet Plateau. We compared resource allocation to conspicuous yellow sepals (which mainly provide visual attraction) and degenerate petals (which provide the major nectar reward) between populations at four altitudes. Furthermore, we investigated the contribution of sepals and petals to pollinator attraction and female reproductive success in an experiment with sepal or petal removal at sites at different altitudes. At the level of single flowers, resource allocation increased to sepals but decreased to petals with increasing altitude. Consistent with these results, sepals contributed much more to visitation rate and seed set than petals, as confirmed in the sepal or petal removal experiment. Sepals and petals contributed to female reproductive success by ensuring visitation rate rather than visitation duration. To alleviate increasing pollen limitation with increasing altitude, resource allocation patterns of T. ranunculoides altered to favour development of sepals rather than petals. This strategy may improve pollination and reproductive success through visual attraction (sepal) rather than nectar reward (petal) over a gradient of decreasing pollinator abundance.  相似文献   

14.
One of the most widely accepted explanations for floral diversification in angiosperms is the pollinator-shift model developed by Verne Grant and Ledyard Stebbins. According to this model, the most profound changes in floral traits (such as morphology, color, patterning and scent) occur when plants undergo adaptive shifts between pollinator classes. We tested this model through investigations of geographical variation in floral form and pollinator assemblages in the South African annual daisy Gorteria diffusa. This species has elaborate insect-like ornaments on the capitulum, which attract bee flies belonging to the genus Megapalpus. We found unprecedented levels of geographically structured intraspecific variation and identified 14 discrete forms that vary in the morphology and ornamentation of the capitulum. This variation is not due to phenotypic plasticity because differences among forms were maintained in plants grown from seed in a common garden experiment. Contrary to predictions from the pollinator-shift model, all populations, regardless of floral phenotype, were pollinated primarily by a single species of Megapalpus bee fly. Much of the extensive variation in floral form in G. diffusa therefore appears to have arisen without evolutionary shifts between pollinator types.  相似文献   

15.
Priority effects occur when the order of species arrival affects subsequent ecological processes. The order that pollinator species visit flowers may affect pollination through a priority effect, whereby the first visitor reduces or modifies the contribution of subsequent visits. We observed floral visitation to blueberry flowers from honeybees, stingless bees or a mixture of both species and investigated how (i) initial visits differed in duration to later visits; and (ii) how visit sequences from different pollinator taxa influenced fruit weight. Stingless bees visited blueberry flowers for significantly longer than honeybees and maintained their floral visit duration, irrespective of the number of preceding visits. In contrast, honeybee visit duration declined significantly with an increasing number of preceding visits. Fruit weight was positively associated with longer floral visit duration by honeybees but not from stingless bee or mixed species visitation. Fruit from mixed species visits were heavier overall than single species visits, because of a strong priority effect. An initial visit by a stingless bee fully pollinated the flower, limiting the pollination contribution of future visitors. However, after an initial honeybee visit, flowers were not fully pollinated and additional visitation had an additive effect upon fruit weight. Blueberries from flowers visited first by stingless bees were 60% heavier than those visited first by honeybees when total floral visitation was short (∼1 min). However, when total visitation time was long (∼ 8 min), blueberry fruit were 24% heavier when initial visits were from honeybees. Our findings highlight that the initial floral visit can have a disproportionate effect on pollination outcomes. Considering priority effects alongside traditional measures of pollinator effectiveness will provide a greater mechanistic understanding of how pollinator communities influence plant reproductive success.  相似文献   

16.
Ørjan Totland 《Oikos》2004,106(3):558-564
The preference for certain floral phenotypes by flower visiting animals may fuel the evolution of floral traits because variation in flower visitation rates may lead to fitness variation within a population. Here, I examine the importance of flower size for pollinator visitation rate, seed set, and seed mass in two alpine populations of the insect-pollinated herb Ranunculus acris L. during two seasons. There was no pollen limitation of seed set or mass. Pollinators discriminated strongly against flowers experimentally reduced in size. Despite this, there were no signs of any significant impact of flower size on female reproductive success. The results show that although pollinators discriminate strongly among floral phenotypes, this may not always result in female fitness differences within a population because seed set or mass is not limited by pollen availability alone. Probably abiotic environmental constraints prevent plants with high pollinator visitation from capitalizing on the high pollen deposition.  相似文献   

17.
We documented effects of floral variation on seed paternity and maternal fecundity in a series of small experimental populations of wild radish, R. sativus. Each population was composed of two competing pollen donor groups with contrasting floral morphologies and several designated maternal plants. Progeny testing with electrophoretic markers allowed us to measure paternal success. Realized fecundity by each maternal plant and the fraction of those seeds attributable to each pollen donor group were used as outcome variables in path analysis to explore relationships between floral characters (petal size, pollen grain number per flower, and modal pollen grain size), pollinator visitation patterns, and reproductive success. A wide range of pollinator taxa visited the experimental populations, and patterns of discrimination appeared to vary among them. The impact of visitation on male and female reproduction also varied among taxa; visits of small native bees significantly increased paternal success, while those of honey bees reduced male fitness. Only visits by large native bees had discernible effects on recipient fecundity, and, overall, fecundity was not limited by visitation. Maternal plants bearing large-petalled flowers produced fewer flowers during the experiment, reducing their total seed production. In these small populations, postpollination processes (at least in part, compatibility) significantly influenced male and female reproductive success. Variation in pollinator pools occurring on both spatial and temporal scales may act to preserve genetic variation for floral traits in this species.  相似文献   

18.
Variation in flower color, particularly polymorphism, in which two or more different flower color phenotypes occur in the same population or species, may be affected or maintained by mechanisms that depend on pollinators. Furthermore, variation in floral display may affect pollinator response and plant reproductive success through changes in pollinator visitation and availability of compatible pollen. To asses if flower color polymorphism and floral display influences pollinator preferences and movements within and among plants and fitness-related variables we used the self-incompatible species Cosmos bipinnatus Cav. (Asteraceae), a model system with single-locus flower color polymorphism that comprises three morphs: white (recessive homozygous), pink (heterozygous co-dominate), and purple (dominant homozygous) flowers. We measured the preferences of pollinators for each morph and constancy index for each pollinator species, pollination visitation rate, floral traits, and female fitness measures. Flower color morphs differed in floral trait measures and seed production. Pollinators foraged nonrandomly with respect to flower color. The most frequent morph, the pink morph, was the most visited and pollinators exhibited the highest constancy for this morph. Moreover, this morph exhibited the highest female fitness. Pollinators responded strongly to floral display size, while probed more capitulums from plants with large total display sizes, they left a great proportion of them unvisited. Furthermore, total pollinator visitation showed a positive relation with female fitness. Results suggest that although pollinators preferred the heterozygous morph, they alternate indiscriminately among morphs making this polymorphism stable.  相似文献   

19.
Gong YB  Huang SQ 《Oecologia》2011,166(3):671-680
A traditional view of diverse floral traits is that they reflect differences in foraging preferences of pollinators. The role of pollinators in the evolution of floral traits has been questioned recently by broad community surveys, especially studies concerning variation in pollinator assemblages and visitation frequency, which suggest a diminished role of pollinators in floral evolution. Here, we investigate the relationships between six categories of floral traits of 29 species and 10 pollinator functional groups in an alpine meadow in the Hengduan Mountains of China, over three consecutive years. Simpson’s diversity index was used to estimate the level of pollinator generalization of each plant species by considering both pollinator groups and their relative visitation frequencies. Multivariate analyses indicated that eight of the ten pollinator groups showed constant preferences for at least two floral traits, leading to a relatively stable level of ecological generalization for most floral traits (two out of three categories), despite the fact that the level of generalization of the entire community varied across years. Shape preferences of butterflies, honeybees and beeflies varied such that open flowers exhibited a lower level of ecological generalization in 2007 than closed flowers, in contrast with the other 2 years. These results suggest that temporally stabilized preferences of diverse pollinators may contribute to the evolution of specialized versus generalized floral traits; however, their role may be moderated by variation in community structure, including both the composition and abundance of plants and pollinators.  相似文献   

20.
《Plant Ecology & Diversity》2013,6(5-6):403-418
Background: Intraspecific variations in floral traits of species over its geographic range can be associated with differences in pollinator assemblages and/or with environmental conditions.

Aims: We evaluated the area of elaiophores in different populations of Stigmaphyllon bonariense (n = 9) and S. jatrophifolium (n = 6), and we hypothesised a marked reduction in their size towards their southern limits of distribution, associated with different oil-collecting bee assemblages.

Methods: Area of elaiophores was calculated and we carried out linear correlations with floral size, pollinators, visitation rate and pollinator size along the latitudinal gradient of the plants’ distributions. Moreover, we examined the relative size relationships using allometric analyses, to verify this reduction.

Results: Floral elaiophore area decreased with latitude. However, for S. bonariense we observed an allometric reduction in elaiophore area with respect to floral size, while for S. jatrophifolium an isometric reduction was found. In both species, pollinator richness and visitation rate did not diminish with latitude, but pollinator size for S. bonariense varied.

Conclusions: Our results show a reduction in the size of elaiophores in both species along their distribution range, with dissimilar tendencies, suggesting that these species may have different selection pressures that cause variation of their phenotypic traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号