首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect pollination improves the yield and quality of many crops, yet there is increasing evidence of insufficient insect pollinators limiting crop production. Effective Integrated Crop Pollination (ICP) involves adaptable, targeted and cost-effective management of crop pollination and encourages the use of both wild and managed pollinators where appropriate. In this study we investigate how the addition of honeybee hives affects the community of insects visiting oilseed rape, and if hive number and location affect pollinator foraging and oilseed rape pollination in order to provide evidence for effective ICP. We found that introducing hives increased overall flower visitor numbers and altered the pollinator community, which became dominated by honeybees. Furthermore a greater number of hives did not increase bee numbers significantly but did result in honeybees foraging further into fields. The timing of surveys and proximity to the field edge influenced different pollinators in different ways and represents an example of spatial and temporal complementarity. For example dipteran flower visitor numbers declined away from the field edge whereas honeybees peaked at intermediate distances into the field. Furthermore, no significant effects of survey round on wild bees overall was observed but honeybee numbers were relatively lower during peak flowering and dipteran abundance was greater in later survey rounds. Thus combining diverse wild pollinators and managed species for crop pollination buffers spatial and temporal variation in flower visitation. However we found no effect of insect pollination on seed set or yield of oilseed rape in our trial, highlighting the critical need to understand crop demand for insect pollination before investments are made in managing pollination services.  相似文献   

2.
Urbanization is increasing worldwide, with major impacts on biodiversity, species interactions and ecosystem functioning. Pollination is an ecosystem function vital for terrestrial ecosystems and food security; however, the processes underlying the patterns of pollinator diversity and the ecosystem services they provide in cities have seldom been quantified. Here, we perform a comprehensive meta-analysis of 133 studies examining the effects of urbanization on pollinators and pollination. Our results confirm the widespread negative impacts of urbanization on pollinator richness and abundance, with Lepidoptera being the most affected group. Furthermore, pollinator responses were found to be trait-specific, with below-ground nesting and solitary Hymenoptera, and spring flyers more severely affected by urbanization. Meanwhile, cities promote non-native pollinators, which may exacerbate conservation risks to native species. Surprisingly, despite the negative effects of urbanization on pollinator diversity, pollination service measured as seed set is enhanced in non-tropical cities likely due to abundant generalists and managed pollinators therein. We emphasize that the richness of local flowering plants could mitigate the negative impacts of urbanization on pollinator diversity. Overall, the results demonstrate the varying magnitudes of multiple moderators on urban pollinators and pollination services and could help guide conservation actions for biodiversity and ecosystem function for a sustainable future.  相似文献   

3.
Pollination service in agricultural crops increases significantly with pollinator diversity and wild pollinator abundance. Differences in the foraging behaviour of pollinating insects are one of the reasons why pollinator diversity and abundance enhances crop pollination. Here, we focused on the foraging behaviour of honey bees and bumble bees in sweet cherry orchards. In addition, we studied the influence of bee diversity and abundance on the foraging behaviour of honey bees and bumble bees. Honey bees were found to visit fewer flowers than bumble bees. Bumble bees also showed a higher probability of changing trees between rows than honey bees. Both visitation rate and probability of row changes of honey bees increased with bumble bee diversity and with bumble bee abundance. We also found that the probability of row changes of honey bees increased with increasing bumble bee abundance. These effects of bumble bee richness and abundance on the pollination behaviour of honey bees can improve the pollination performance of honey bees in crops that depend on cross pollination. Our results highlight the higher pollination performance of bumble bees and the facilitative effect of wild pollinators to crop pollination.  相似文献   

4.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

5.
Understanding the relative contributions of wild and managed pollinators, and the functional contributions made by a diverse pollinator community, is essential to the maintenance of yields in the 75% of our crops that benefit from insect pollination. We describe a field study and pollinator exclusion experiments conducted on two soft-fruit crops in a system with both wild and managed pollinators. We test whether fruit quality and quantity is limited by pollination, and whether different pollinating insects respond differently to varying weather conditions. Both strawberries and raspberries produced fewer marketable fruits when insects were excluded, demonstrating dependence on insect pollinators. Raspberries had a short flowering season which coincided with peak abundance of bees, and attracted many bees per flower. In contrast, strawberries had a much longer flowering season and appeared to be much less attractive to pollinators, so that ensuring adequate pollination is likely to be more challenging. The proportion of high-quality strawberries was positively related to pollinator abundance, suggesting that yield was limited by inadequate pollination on some farms. The relative abundance of different pollinator taxa visiting strawberries changed markedly through the season, demonstrating seasonal complementarity. Insect visitors responded differently to changing weather conditions suggesting that diversity can reduce the risk of pollination service shortfalls. For example, flies visited the crop flowers in poor weather and at the end of the flowering season when other pollinators were scarce, and so may provide a unique functional contribution. Understanding how differences between pollinator groups can enhance pollination services to crops strengthens the case for multiple species management. We provide evidence for the link between increased diversity and function in real crop systems, highlighting the risks of replacing all pollinators with managed alternatives.  相似文献   

6.
  • 1 Declining numbers in honeybees and various wild bee species pose a threat to global pollination services. The identification and quantification of the pollination service provided by different taxa within the pollinator guild is a prerequisite for the successful establishment of nature conservation and crop management regimes.
  • 2 Wild bees and hoverflies are considered to be valuable pollinators in agricultural and natural systems. Although some information on pollination efficiency of individual pollinator species is available, comparative studies of both taxa at different densities are rare. In the present study, the efficiency of the solitary mason bee Osmia rufa and two hoverfly species (Eristalis tenax and Episyrphus balteatus) as pollinators of oilseed rape Brassica napus was examined in a standardized caged plant breeding regime. Honeybee Apis mellifera colonies were used as a reference pollinator taxon.
  • 3 Yield parameters responded differently to pollinator density and identity. Fruit set and number of seeds per pod increased with increasing pollinator density, although these were stronger in the mason bee than the hoverfly treatment. Weight per 1000 seeds did not respond to any pollinator treatment, indicating that seed quality was not affected. Oilseed rape yield in the highest tested densities of both pollinator taxa resulted in yield values close to the efficiency of small honeybee colonies.
  • 4 Hoverflies required approximately five‐fold densities of the red mason bees to reach a similar fruit set and yield. Thus, mason bees are more efficient in plant breeding and managed pollination systems. Both natural pollinator taxa, however, are of potential value in open and closed crop production systems.
  相似文献   

7.
The yield of many agricultural crops depends on pollination services provided by wild and managed bees, many of which are experiencing declines due to factors such as reductions in floral resources. Thus, improving pollinator habitat on farmlands using management strategies like planting wildflower strips is vital for wild bee conservation and sustainable crop pollination. Yet, few studies have examined whether and at what spatial scales wildflower strips enhance crop pollination and yields, and most research has been conducted in large-scale commercial agriculture. Therefore, we investigated the effects of wildflower strips on crop pollination on small, diversified farms (i.e., those growing a variety of crop species) where wild bee diversity and abundance is predicted to be comparatively high. Over three years, on four diversified farms in Montana USA, we tested the hypothesis that distance (20, 60, and 180 m) of crops from native perennial wildflower strips planted alongside crop fields affected wild bee visitation, pollination, and yields of squash and sunflower crop plants. We found that distance to wildflower strips did not affect bee visitation or pollination in crops. Squash yield was pollen-limited in the growing season prior to wildflower strip establishment, and in one of the two years after wildflower strip establishment, but proximity to wildflower strips did not influence the magnitude of pollen limitation. Sunflower seed production was not pollen-limited in any year. Our findings demonstrate that even on diverse farms with wildflower strips and a demonstrated high diversity of bees, some crops do not necessarily receive maximum pollination, regardless of distance from the wildflower strips. However, the value of wildflower strips for supporting wild bee diversity, and other ecological or economic benefits, needs consideration for a full understanding of this pollinator habitat management strategy.  相似文献   

8.
Wildflower strips (WFS) are amongst the most commonly applied measures to promote pollinators and natural enemies of crop pests in agroecosystems. Their potential to enhance these functionally important insect groups may vary substantially with time since establishment of WFS. However, knowledge on their temporal dynamics remains scarce, hampering recommendations for optimized design and management. We therefore examined temporal dynamics of taxonomic and functional groups of bees and hoverflies in perennial WFS ranging from one to ≥6 years since sowing with a standardized species-rich seed mixture of flowering plants in 18 agricultural landscapes in Switzerland. The abundance of wild bees, honeybees and hoverflies declined after the second year by 89%, 62% and 72%, respectively. Declines in bee abundance and hoverfly species richness were linear and those of aphidophagous hoverflies exponential, while wild bee species richness peaked in the third year. Declines over time generally paralleled decreases in flower abundance (-83%) and flowering species richness (-61%) and an increase in grass cover (+70%) in WFS. Flowering plant species richness showed strong positive relationships with dominant crop-visiting wild bees and aphidophagous hoverflies. Furthermore, dominant crop-visiting wild bees, but not aphidophagous hoverflies, were positively related to the proportion of (semi-)open semi-natural habitat in the surrounding landscape (500 m radius), but negatively with forest. We conclude that the effectiveness of perennial WFS to promote pollinator diversity, crop-pollinating bees and aphidophagous hoverflies through foraging resources decreases after the first two to three years, probably due to a decline of diverse and abundant floral resources. Although older perennial WFS may still provide valuable nesting and overwintering opportunities for pollinators and natural enemies, our findings indicate that regular re-sowing of perennial WFS may be necessary to maintain adequate floral resource provisioning for effective pollinator conservation and promotion of crop pollination and natural pest control services in agricultural landscapes.  相似文献   

9.
传粉动物多样性的保护与农业景观传粉服务的提升   总被引:3,自引:0,他引:3  
传粉动物为许多植物尤其是作物提供了重要的传粉服务, 在保障全球粮食安全和人类福祉、缓冲气候变化对作物产量的影响等方面都发挥着重要的作用。然而来自全球土地利用变化、化学农药使用、外来物种入侵及气候变化等的威胁, 导致传粉动物的多样性下降并造成了依赖动物传粉的作物产量和品质的下降。针对这一情况, 作者提出了农业景观传粉动物多样性保护和利用的3种主要途径: (1)改善生产管理, 例如减少化学农药的使用、适当地采取有机种植; (2)促进景观多样性, 包括创建适宜野生传粉者的半自然生境、保护高价值的自然生境、作物多样化、合理配置资源和生境的空间分布; (3)加强对本土传粉动物的保护和开发利用。文章最后提出, 为进一步提升传粉服务, 还需加强对传粉者的生物学特征、传粉服务的需求与供给现状、影响传粉动物多样性和传粉服务的农作措施和景观因素等方面的研究。  相似文献   

10.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

11.
The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation.  相似文献   

12.
Recent declines in managed honey bee, Apis mellifera L., colonies have increased interest in the current and potential contribution of wild bee populations to the pollination of agricultural crops. Because wild bees often live in agricultural fields, their population density and contribution to crop pollination may be influenced by farming practices, especially those used to reduce the populations of other insects. We took a census of pollinators of squash and pumpkin at 25 farms in Virginia, West Virginia, and Maryland to see whether pollinator abundance was related to farming practices. The main pollinators were Peponapis pruinosa Say; honey bees, and bumble bees (Bombus spp.). The squash bee was the most abundant pollinator on squash and pumpkin, occurring at 23 of 25 farms in population densities that were commonly several times higher than that of other pollinators. Squash bee density was related to tillage practices: no-tillage farms hosted three times as great a density of squash bees as tilled farms. Pollinator density was not related to pesticide use. Honey bee density on squash and pumpkin was not related to the presence of managed honey bee colonies on farms. Farms with colonies did not have more honey bees per flower than farms that did not keep honey bees, probably reflecting the lack of affinity of honey bees for these crops. Future research should examine the economic impacts of managing farms in ways that promote pollinators, particularly pollinators of crops that are not well served by managed honey bee colonies.  相似文献   

13.
An increasing number of farmland initiatives aim to aid biodiversity conservation through alternative farming practices such as nature-inclusive farming. However, these approaches frequently lead to trade-offs between biodiversity conservation and crop yield. For example, buckwheat (Fagopyrum esculentum) is a melliferous crop that flowers for a long period in the summer when nectar in agricultural areas is generally scarce, and buckwheat cultivation could therefore contribute to wild pollinator conservation. However, honeybees (Apis mellifera) are placed to ensure sufficient crop pollination, which potentially increases resource competition with wild pollinators in and around the crop. Here, we have studied this trade-off by surveying pollinators in and around 16 small-scale (∼1 ha) flowering buckwheat fields and we determined the contribution of pollinator density to crop yield in a nature-inclusive farming project. We found that the buckwheat pollinator community was diverse, albeit dominated by honeybees. We found no clear indications of resource competition between honeybees and wild pollinators within the buckwheat fields. Honeybee density in the surroundings was generally low, and increased minimally during honeybee-hive placement. While densities of honeybees decreased non-linearly over the day in buckwheat fields, they did not (temporarily) move into the surroundings of the field, suggesting limited competition for resources with wild pollinators. Crop yield was largely dependent on crop pollinator density, notably of honeybees, and to a lesser extent crop biomass (as a proxy for agricultural management). Our results show that buckwheat cultivation fits well within nature-inclusive farming if some simple precautionary measures are being taken, such as limiting the honeybee-hive densities and placing hives only during the main flowering period. The introduction of buckwheat cultivation into crop rotation could then contribute to fill an important nectar gap in the summer, which potentially boosts wild pollinator populations in the long term.  相似文献   

14.
Insect pollination benefits over three quarters of the world''s major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.  相似文献   

15.
Evidence for pollinator declines has led to concern that inadequate pollination services may limit crop yields. The global trade in commercial bumble bee (Bombus spp.) colonies provides pollination services for both glasshouse and open-field crops. For example, in the United Kingdom, commercial colonies of nonnative subspecies of the bumble bee Bombus terrestris L. imported from mainland Europe are widely used for the pollination of raspberries, Rubus idaeus L. The extent to which these commercial colonies supplement the services provided by wild pollinators has not been formally quantified and the impact of commercial bumble bees on native bees visiting the crop is unknown. Here, the impacts of allowing commercially available bumble bee colonies to forage on raspberry canes are assessed in terms of the yield of marketable fruit produced and the pollinator communities found foraging on raspberry flowers. No differences were found in the abundance, diversity, or composition of social bee species observed visiting raspberry flowers when commercial bumble bees were deployed compared with when they were absent. However, weight of marketable raspberries produced increased when commercial bees were present, indicating that wild pollinator services alone are inadequate for attaining maximum yields. The findings of the study suggests that proportional yield increases associated with deployment of commercial colonies may be small, but that nevertheless, investment in commercial colonies for raspberry pollination could produce very significant increases in net profit for the grower. Given potential environmental risks associated with the importation of nonnative bumble bees, the development of alternative solutions to the pollination deficit in raspberry crops in the United Kingdom may be beneficial.  相似文献   

16.
Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega‐diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.  相似文献   

17.
If climate change affects pollinator‐dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature‐induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change.  相似文献   

18.
Wildlife-friendly management practices promote pollinators and pollination services in agricultural landscapes. Wild bee densities are driven by landscape composition, as they benefit from an increased availability of nesting and foraging resources at landscape scale. However, effects of landscape composition on bee foraging decisions and consequences for crop pollination have rarely been studied. We investigated, how landscape composition affects bee densities and foraging behavior in faba bean (Vicia faba L.) fields and how this impacts faba bean yield. We recorded densities and nectar robbing behavior of honeybees, long- tongued and short-tongued bumblebees in faba bean fields in eleven landscapes with varying landscape composition (e.g. land cover of oilseed rape, faba bean and semi-natural habitats). Moreover, we assessed yield components of faba beans via pollinator exclusion experiments. Increasing covers of faba bean and semi-natural habitats positively influenced bumblebee densities, while high oilseed rape covers negatively affected short-tongued bumblebee densities in bean fields. Increased faba bean covers enhanced the proportion of nectar-robbing short-tongued bumblebees. The number of beans per pod was increased by insect pollination, while the number of pods was decreased; these effects however depended on variety. Landscape composition interacted with bee densities in shaping yield components in V. faba. Our study emphasizes the importance of considering landscape management to maximize crop yields, as shown for the case of faba beans. The composition of agricultural landscape can modulate bee densities in crop fields, bees foraging behavior and pollination services.  相似文献   

19.
Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process‐based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi‐extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.  相似文献   

20.
昆虫传粉在维持植物的有性繁殖、物种形成及生态系统稳定中扮演着重要角色, 而野生传粉昆虫为生态系统提供了巨大的传粉服务功能。大蜜蜂(Apis dorsata)为亚洲特有的一种野生传粉昆虫, 是热带地区多种植物和农作物的有效传粉者, 在保障热带生物多样性及作物产量中有不可或缺的作用。但受全球气候变化、人类活动和生境恶化等因素的影响, 其种群数量日益减少, 开展大蜜蜂种质资源保护势在必行。本文综述了大蜜蜂筑巢、迁飞和传粉服务功能, 分析了人为猎取蜂巢, 栖息生境遭受破坏, 杀虫剂和除草剂滥用, 昆虫、螨类和病原物侵染, 气候变化等威胁种群的因素, 以期从强化大蜜蜂基础研究和保护、推动生态农业发展、建立适合大蜜蜂迁飞生态廊道、加强检验检疫及科学合理利用大蜜蜂种质资源等方面制定相应的保护措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号