首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Head and neck squamous cell carcinoma (HNSCC) is the most common malignancy in Taiwan. Therefore, refining the diagnostic sensitivity of biomarkers for early‐stage tumours and identifying therapeutic targets are critical for improving the survival rate of HNSCC patients. Metabolic reprogramming contributes to cancer development and progression. Metabolic pathways, specifically, play a crucial role in these diverse biological and pathological processes, which include cell proliferation, differentiation, apoptosis and carcinogenesis. Here, we investigated the role and potential prognostic value of the ubiquitin‐conjugating enzyme E2 (UBE2) family in HNSCC. Gene expression database analysis followed by tumour comparison with non‐tumour tissue showed that UBE2C was upregulated in tumours and was associated with lymph node metastasis in HNSCC patients. Knockdown of UBE2C significantly reduced the invasion/migration abilities of SAS and CAL27 cells. UBE2C modulates glycolysis pathway activation and HIF‐1α expression in SAS and CAL27 cells. CoCl2 (HIF‐1α inducer) treatment restored the expression of glycolytic enzymes and the migration/invasion abilities of UBE2C knockdown cells. Based on our findings, UBE2C expression mediates HIF‐1α activation, increasing glycolysis pathway activation and the invasion/migration abilities of cancer cells. UBE2C may be an independent prognostic factor and a therapeutic target in HNSCC.  相似文献   

2.
3.
Growing evidence has shown that Transmembrane Serine Protease 2 (TMPRSS2) not only contributes to the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, but is also closely associated with the incidence and progression of tumours. However, the correlation of coronavirus disease (COVID‐19) and cancers, and the prognostic value and molecular function of TMPRSS2 in various cancers have not been fully understood. In this study, the expression, genetic variations, correlated genes, immune infiltration and prognostic value of TMPRSS2 were analysed in many cancers using different bioinformatics platforms. The observed findings revealed that the expression of TMPRSS2 was considerably decreased in many tumour tissues. In the prognostic analysis, the expression of TMPRSS2 was considerably linked with the clinical consequences of the brain, blood, colorectal, breast, ovarian, lung and soft tissue cancer. In protein network analysis, we determined 27 proteins as protein partners of TMPRSS2, which can regulate the progression and prognosis of cancer mediated by TMPRSS2. Besides, a high level of TMPRSS2 was linked with immune cell infiltration in various cancers. Furthermore, according to the pathway analysis of differently expressed genes (DEGs) with TMPRSS2 in lung, breast, ovarian and colorectal cancer, 160 DEGs genes were found and were significantly enriched in respiratory system infection and tumour progression pathways. In conclusion, the findings of this study demonstrate that TMPRSS2 may be an effective biomarker and therapeutic target in various cancers in humans, and may also provide new directions for specific tumour patients to prevent SARS‐CoV‐2 infection during the COVID‐19 outbreak.  相似文献   

4.
5.
A disintegrin and metalloproteinase 8 (ADAM8) protein is a multi‐domain transmembrane glycoprotein which involves in extracellular matrix remodelling, cell adhesion, invasion and migration. ADAM8 and epithelial‐mesenchymal transition (EMT) play an important role in tumour invasion has been well established. However, the interaction between ADAM8 and EMT has remained unclear. The data of colon cancer patients obtained from TCGA (The Cancer Genome Atlas) and GTEx (Genotype‐Tissue Expression Project) were analysed by the bioinformatics research method. The expression of ADAM8 in colon cancer cells was up‐regulated and down‐regulated by transfecting with the expression plasmid and small interfering RNA, respectively. Transwell invasion assay, immunohistochemistry, immunocytochemistry, Western blotting and qRT‐PCR were utilized to study the effect of ADAM8 on colon cancer cell''s EMT and its related mechanisms. Analysis of TCGA and GTEx data revealed that ADAM8 was linked to poor overall survival in colon cancer patients. Besides, ADAM8 was correlated with multiple EMT biomarkers (E‐cadherin, N‐cadherin, Vimentin, Snail2 and ZEB2). In vitro, we also proved that the up‐regulation of ADAM8 could promote EMT effect and enhance the invasive ability of colon cancer cells. On the contrary, the down‐regulation of ADAM8 in colon cancer cells attenuated these effects above. Further studies suggested that ADAM8 modulated EMT on colon cancer cells through TGF‐β/Smad2/3 signalling pathway. Our research suggested that ADAM8 could be a potential biomarker for the prognosis of colon cancer and induced EMT to promote the invasion of colon cancer cells via activating TGF‐β/Smad2/3 signalling pathway.  相似文献   

6.
Lung cancer is the leading cause of cancer‐associated death, with a global 5‐year survival rate <20%. Early metastasis and recurrence remain major challenges for lung cancer treatment. The stemness property of cancer cells has been suggested to play a key role in cancer plasticity, metastasis and drug‐resistance, and is a potential target for drug development. In this study, we found that in non‐small cell lung cancer (NSCLC), BMI1 and MCL1 play crucial roles of cancer stemness including invasion, chemo‐resistance and tumour initiation. JNK signalling serves as a link between oncogenic pathway or genotoxicity to cancer stemness. The activation of JNK, either by mutant EGFR or chemotherapy agent, stabilized BMI1 and MCL1 proteins through suppressing the expression of E3‐ubiquitin ligase HUWE1. In lung cancer patient samples, high level of BMI1 is correlated with poor survival, and the expression of BMI1 is positively correlated with MCL1. A novel small‐molecule, BI‐44, was developed, which effectively suppressed BMI1/MCL1 expressions and inhibited tumour formation and progression in preclinical models. Targeting cancer stemness mediated by BMI1/MCL1 with BI‐44 provides the basis for a new therapeutic approach in NSCLC treatment.  相似文献   

7.
Insulin‐like growth factor‐2 messenger RNA‐binding protein 3 (IGF2BP3) has been reported to contribute to tumorigenesis in several human cancers. However, the biological functions of IGF2BP3 in bladder cancer are poorly understood. We investigated the relation between IGF2BP3 expression and prognosis of bladder cancer patients. Cell proliferation, cell cycle and cell apoptosis assays were performed to assess IGF2BP3 functions. The results showed that IGF2BP3 was overexpressed in bladder cancer tissues compared with that in normal bladder tissues, and its higher expression was closely correlated with poor prognosis in bladder cancer patients. Overexpression of IGF2BP3 markedly promoted cell proliferation and cell cycle progression and inhibited cell apoptosis, while knockdown of IGF2BP3 notably suppressed the proliferation, promoted cell apoptosis and induced cell cycle arrest at the G0/G1 phase. Mechanistically, we revealed that IGF2BP3 promotes the activation of the JAK/STAT pathway in bladder cancer cells. Moreover, the JAK/STAT inhibitor dramatically blocked the tumour‐promoting activity of IGF2BP3. Tumour growth in vivo was also suppressed by knocking down of IGF2BP3. Hence, IGF2BP3 facilitated bladder cancer cell proliferation by activating the JAK/STAT signalling pathway. These findings suggest that IGF2BP3 exhibits an oncogenic effect in human bladder cancer progression.  相似文献   

8.
Cancer immune plays a critical role in cancer progression. Tumour immunology and immunotherapy are one of the exciting areas in bladder cancer research. In this study, we aimed to develop an immune‐related gene signature to improve the prognostic prediction of bladder cancer. Firstly, we identified 392 differentially expressed immune‐related genes (IRGs) based on TCGA and ImmPort databases. Functional enrichment analysis revealed that these genes were enriched in inflammatory and immune‐related pathways, including in ‘regulation of signaling receptor activity’, ‘cytokine‐cytokine receptor interaction’ and ‘GPCR ligand binding’. Then, we separated all samples in TCGA data set into the training cohort and the testing cohort in a ratio of 3:1 randomly. Data set GSE13507 was set as the validation cohort. We constructed a prognostic six‐IRG signature with LASSO Cox regression in the training cohort, including AHNAK, OAS1, APOBEC3H, SCG2, CTSE and KIR2DS4. Six IRGs reflected the microenvironment of bladder cancer, especially immune cell infiltration. The prognostic value of six‐IRG signature was further validated in the testing cohort and the validation cohort. The results of multivariable Cox regression and subgroup analysis revealed that six‐IRG signature was a clinically independent prognostic factor for bladder cancer patients. Further, we constructed a nomogram based on six‐IRG signature and other clinicopathological risk factors, and it performed well in predict patients'' survival. Finally, we found six‐IRG signature showed significant difference in different molecular subtypes of bladder cancer. In conclusions, our research provided a novel immune‐related gene signature to estimate prognosis for patients'' survival with bladder cancer.  相似文献   

9.
Pancreatic cancer is one of the most lethal gastrointestinal tumours, the most common pathological type is pancreatic adenocarcinoma (PAAD). In recent year, immune imbalanced in tumour microenvironment has been shown to play an important role in the evolution of tumours progression, and the efficacy of immunotherapy has been gradually demonstrated in clinical practice. In this study, we propose to construct an immune‐related prognostic risk model based on immune‐related genes MMP14 and INHBA expression that can assess the prognosis of pancreatic cancer patients and identify potential therapeutic targets for pancreatic cancer, to provide new ideas for the treatment of pancreatic cancer. We also investigate the correlation between macrophage infiltration and MMP14 and INHBA expression. First, the gene expression data of pancreatic cancer and normal pancreatic tissue were obtained from The Cancer Genome Atlas Program (TCGA) and The Genotype‐Tissue Expression public database (GTEx). The differentially expressed immune‐related genes between pancreatic cancer samples and normal sample were screened by R software. Secondly, univariate Cox regression analysis were used to evaluate the relationship between immune‐related genes and the prognosis of pancreatic cancer patients. A polygenic risk score model was constructed by Cox regression analysis. The prognostic nomogram was constructed, and its performance was evaluated comprehensively by internal calibration curve and C‐index. Using the risk model, each patient gets a risk score, and was divided into high‐ or low‐ risk groups. The proportion of 22 types of immune cells infiltration in pancreatic cancer samples was inferred by CIBERSOFT algorithm, correlation analysis (Pearson method) was used to analyse the correlation between the immune‐related genes and immunes cells. Then, we applied macrophage conditioned medium to culture pancreatic cancer cell line PANC1, detected the expression of MMP14 and INHBA by qRT‐PCR and Western blot methods. Knock‐down MMP14 and INHBA in PANC1 cells by transfected with shRNA lentiviruses. Detection of migration ability of pancreatic cells was done by trans‐well cell migration assay. A subcutaneous xenograft tumour model of human pancreatic cancer in nude mice was constructed. In conclusion, an immune‐related gene prognostic model was constructed, patients with high‐risk scores have poorer survival status, M2‐phenotype tumour‐associated macrophages (TAMs) up‐regulate two immune‐related genes, MMP14 and INHBA, which were used to establish the prognostic model. Knock‐down of MMP14 and INHBA inhibited invasion of pancreatic cancer.  相似文献   

10.
Periampullary adenocarcinoma, including pancreatic cancer, is a heterogeneous group of tumours with dismal prognosis, for which there is an urgent need to identify novel treatment strategies. The human epithelial growth factor receptors EGFR, HER2 and HER3 have been studied in several tumour types, and HER-targeting drugs have a beneficial effect on survival in selected types of cancer. However, these effects have not been evident in pancreatic cancer, and remain unexplored in other types of periampullary cancer. The prognostic impact of HER-expression in these cancers also remains unclear. The aim of this study was therefore to examine the expression and prognostic value of EGFR, HER2 and HER3 in periampullary cancer, with particular reference to histological subtype. To this end, protein expression of EGFR, HER2 and HER3, and HER2 gene amplification was assessed by immunohistochemistry and silver in situ hybridization, respectively, on tissue microarrays with tumours from 175 periampullary adenocarcinomas, with follow-up data on recurrence-free survival (RFS) and overall survival (OS) for up to 5 years. EGFR expression was similar in pancreatobiliary (PB) and intestinal (I) type tumours, but high HER2 and HER3 expression was significantly more common in I-type tumours. In PB-type cases receiving adjuvant gemcitabine, but not in untreated cases, high EGFR expression was significantly associated with a shorter OS and RFS, with a significant treatment interaction in relation to OS (pinteraction = 0.042). In I-type cases, high EGFR expression was associated with a shorter OS and RFS in univariable, but not in multivariable, analysis. High HER3 expression was associated with a prolonged RFS in univariable, but not in multivariable, analysis. Neither HER2 protein expression nor gene amplification was prognostic. The finding of a potential interaction between the expression of EGFR and response to adjuvant chemotherapy in PB-type tumours needs validation, and merits further study.  相似文献   

11.
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo‐ and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo‐ and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non‐tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2‐YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer‐related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2‐YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC.  相似文献   

12.
13.
This article aims to explore the underlying molecular mechanisms and prognosis‐related genes in pancreatic cancer metastasis. Pancreatic cancer metastasis‐related gene chip data were downloaded from GENE EXPRESSION OMNIBUS(GEO)database. Differentially expressed genes were screened after R‐package pre‐treatment. Functional annotations and related signalling pathways were analysed using DAVID software. GEPIA (Gene Expression Profiling Interactive Analysis) was used to perform prognostic analysis, and differential genes associated with prognosis were screened and validated using data from GEO. We screened 40 healthy patients, 40 primary pancreatic cancer and 40 metastatic pancreatic cancer patients, collected serum, designed primers and used qPCR to test the expression of prognosis‐related genes in each group. 109 differentially expressed genes related with pancreatic cancer metastasis were screened, of which 49 were up‐regulated and 60 were down‐regulated. Functional annotation and pathway analysis revealed differentially expressed genes were mainly concentrated in protein activation cascade, extracellular matrix construction, decomposition, etc In the biological process, it is mainly involved in signalling pathways such as PPAR, PI3K‐Akt and ECM receptor interaction. Prognostic analysis showed the expression levels of four genes were significantly correlated with the overall survival time of patients with pancreatic cancer, namely SCG5, CRYBA2, CPE and CHGB. qPCR experiments showed the expression of these four genes was decreased in both the primary pancreatic cancer group and the metastatic pancreatic cancer group, and the latter was more significantly reduced. Pancreatic cancer metastasis is closely related to the activation of PPAR pathway, PI3K‐Akt pathway and ECM receptor interaction. SCG5, CRYBA2, CPE and CHGB genes are associated with the prognosis of pancreatic cancer, and their low expression suggests a poor prognosis.  相似文献   

14.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

15.
16.
Wnt/β‐catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β‐catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell‐specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β‐catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β‐catenin to stabilize β‐catenin–TCF4 complex and facilitate the transactivation of Wnt/β‐catenin signaling targets. Accordingly, activated β‐catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β‐catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.  相似文献   

17.
ObjectivesCircadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression.Materials and MethodsSamples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single‐cell RNA‐Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony‐forming assay and flow cytometry.ResultsThe cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high‐risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high‐risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase.ConclusionsDysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan‐cancer.  相似文献   

18.
Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour‐promoting effects of circCSNK1G3 were, at least partly, achieved by up‐regulating miR‐181b. Increased miR‐181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR‐181b expression, which leads to TIMP3‐mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.  相似文献   

19.
20.
Inflammation has been reported to play an important role in tumour progression and prognosis. In this study, we evaluated the prognostic significance of γ‐glutamyl transpeptidase (GGT) to albumin ratio (GAR) in patients with intrahepatic cholangiocarcinoma (ICC) after hepatectomy. We retrospectively analysed 650 ICC patients underwent hepatectomy at three Chinese medical centres between January 2009 and September 2017. Patients were classified into derivation cohort (n = 509) and validation cohort (n = 141). Receiver operating characteristic (ROC) curve was used to determine the optimal cut‐off value for GAR. Survival curve and cox regression analysis were applied to assess the prognostic power of GAR. The prognostic accuracy of GAR was compared with other variables by ROC curve. The optimal cut‐off value for GAR was 1.3655. Preoperative high GAR was closely related to tumour number, lymph node invasion and GGT. The survival curve of derivation and validation cohorts showed that patients in the high GAR group had significantly shorter overall survival (OS) and disease‐free survival (DFS) than patients in the low GAR group. Multivariate analysis in the derivation cohort confirmed that GAR was an independent prognostic factor for survival outcomes. Moreover, the ROC curve revealed that GAR had better predictive accuracy than other variables. High GAR predicted poor OS and DFS in ICC patients after hepatectomy. GAR may be a novel, simple and effective prognostic marker for ICC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号