首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ferroptosis is an iron‐dependent form of non‐apoptotic cell death implicated in liver, brain, kidney, and heart pathology. How ferroptosis is regulated remains poorly understood. Here, we show that PPARα suppresses ferroptosis by promoting the expression of glutathione peroxidase 4 (Gpx4) and by inhibiting the expression of the plasma iron carrier TRF. PPARα directly induces Gpx4 expression by binding to a PPRE element within intron 3. PPARα knockout mice develop more severe iron accumulation and ferroptosis in the liver when fed a high‐iron diet than wild‐type mice. Ferrous iron (Fe2+) triggers ferroptosis via Fenton reactions and ROS accumulation. We further find that a rhodamine‐based "turn‐on" fluorescent probe(probe1) is suitable for the in vivo detection of Fe2+. Probe1 displays high selectivity towards Fe2+, and exhibits a stable response for Fe2+ with a concentration of 20 μM in tissue. Our data thus show that PPARα activation alleviates iron overload‐induced ferroptosis in mouse livers through Gpx4 and TRF, suggesting that PPARα may be a promising therapeutic target for drug discovery in ferroptosis‐related tissue injuries. Moreover, we identified a fluorescent probe that specifically labels ferrous ions and can be used to monitor Fe2+ in vivo.  相似文献   

3.
Cinnamon is a wildly used traditional Chinese herbal medicine for osteoarthritis (OA) treatment, but the underlying mechanism remains ambiguous. The purpose of this study is to explore the mechanism of cinnamic aldehyde (CA), a bioactive substance extracted from Cinnamon, on synovial inflammation in OA. A total of 144 CA‐OA co‐targeted genes were identified by detect databases (PubChem, HIT, TCMSP, TTD, DrugBank and GeneCards). The results of GO enrichment analysis indicated that these co‐targeted genes have participated in many biological processes including ‘inflammatory response’, ‘cellular response to lipopolysaccharide’, ‘response to drug’, ‘immune response’, ‘lipopolysaccharide‐mediated signalling pathway’, etc. KEGG pathway analysis showed these co‐targeted genes were mainly enriched in ‘Toll‐like receptor signalling pathway’, ‘TNF signalling pathway’, ‘NF‐kappa B signalling pathway’, etc. Molecular docking demonstrated that CA could successfully bind to TLR2 and TLR4. The results of in vitro experiments showed no potential toxicity of 10, 20 and 50 μM/L CA on human OA FLS, and CA can significantly inhibit the inflammation in LPS‐induced human FLS. Further experimental mechanism evidence confirmed CA can inhibited the inflammation in LPS‐induced human OA FLS via blocking the TLR4/MyD88 signalling pathway. Our results demonstrated that CA exhibited strong anti‐inflammation effect in OA FLS through blocking the activation of TLR4/MyD88 signalling pathway, suggesting its potential as a hopeful candidate for the development of novel agents for the treatment of OA.  相似文献   

4.
Clavulanic acid (CA) is usually used together with other β‐lactam antibiotics as combination drugs to inhibit bacterial β‐lactamases, which is mainly produced from the fermentation of microorganism such as Streptomyces clavuligerus. Recently, it is still a challenge for downstream processing of low concentration and unstable CA from fermentation broth with high solid content, high viscosity, and small cell size. In this study, an integrated process was developed for simultaneous solid–liquid separation and primary purification of CA from real fermentation broth of S. clavuligerus using salting‐out extraction system (SOES). First, different SOESs were investigated, and a suitable SOES composed of ethanol/phosphate was chosen and further optimized using the pretreated fermentation broth. Then, the optimal system composed of 20% ethanol/15% K2HPO4 and 10% KH2PO4 w/w was used to direct separation of CA from untreated fermentation broth. The result showed that the partition coefficient (K) and recovery yield (Y) of CA from untreated fermentation broth were 29.13 and 96.8%, respectively. Simultaneously, the removal rates of the cells and proteins were 99.8% and 63.3%, respectively. Compared with the traditional method of membrane filtration or liquid–liquid extraction system, this developed SOES showed the advantages of simple operation, shorter operation time, lower process cost and higher recovery yield of CA. These results demonstrated that the developed SOES could be used as an attractive alternative for the downstream processing of CA from real fermentation broth.  相似文献   

5.
The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1mM Co, Ni and Fe; 30°C; 96h) at an organic loading rate (OLR) of 5gCOD l reactor–1d–1. One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30h pH shock, but a second 4day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out-competition of acetogens by methanogens. Zinc, copper and manganese supply did not have a clear effect on the acetate removal and methanol conversion, but zinc may have induced the onset of methanol degradation after day 152 in R1.  相似文献   

6.
Oxidative stress plays a central role in age‐related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis‐allylic sites of DHA in photoreceptor membranes could prevent iron‐induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation‐prone positions (D‐DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D‐DHA caused a dose‐dependent increase in D‐DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D‐DHA provided nearly complete protection against iron‐induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D‐DHA. Quantitative PCR results were consistent with iron‐induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D‐DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron‐induced retinal degeneration. They also provide preclinical evidence that dosing with D‐DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.  相似文献   

7.
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.  相似文献   

8.
Oxidative stress plays an important role in the ageing of the retina and in the pathogenesis of retinal diseases such as age‐related macular degeneration (ARMD). Hydrogen peroxide is a reactive oxygen species generated by the photo‐excited lipofuscin that accumulates during ageing in the retinal pigment epithelium (RPE), and the age‐related accumulation of lipofuscin is associated with ARMD. Iron also accumulates with age in the RPE that may contribute to ARMD as an important source of oxidative stress. The aim of this work was to investigate the effects of L‐Citrulline (CIT), a naturally occurring amino acid with known antioxidant properties, on oxidative stressed cultured RPE cells. Human RPE (ARPE‐19) cells were exposed to hydrogen peroxide (H2O2) or iron/ascorbate (I/A) for 4 h, either in the presence of CIT or after 24 h of pretreatment. Here, we show that supplementation with CIT protects ARPE‐19 cells against H2O2 and I/A. CIT improves cell metabolic activity, decreases ROS production, limits lipid peroxidation, reduces cell death and attenuates IL‐8 secretion. Our study evidences that CIT is able to protect human RPE cells from oxidative damage and suggests potential protective effect for the treatment of retinal diseases associated with oxidative stress.  相似文献   

9.
10.
Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer‐induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor‐bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor‐bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer‐induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.  相似文献   

11.
Mycobacterium tuberculosis virulence is highly metal‐dependent with metal availability modulating the shift from the dormant to active states of M. tuberculosis infection. Rv0045c from M. tuberculosis is a proposed metabolic serine hydrolase whose folded stability is dependent on divalent metal concentration. Herein, we measured the divalent metal inhibition profile of the enzymatic activity of Rv0045c and found specific divalent transition metal cations (Cu2+ ≥ Zn2+ > Ni2+ > Co2+) strongly inhibited its enzymatic activity. The metal cations bind allosterically, largely affecting values for k cat rather than K M. Removal of the artificial N‐terminal 6xHis‐tag did not change the metal‐dependent inhibition, indicating that the allosteric inhibition site is native to Rv0045c. To isolate the site of this allosteric regulation in Rv0045c, the structures of Rv0045c were determined at 1.8 Å and 2.0 Å resolution in the presence and absence of Zn2+ with each structure containing a previously unresolved dynamic loop spanning the binding pocket. Through the combination of structural analysis with and without zinc and targeted mutagenesis, this metal‐dependent inhibition was traced to multiple chelating residues (H202A/E204A) on a flexible loop, suggesting dynamic allosteric regulation of Rv0045c by divalent metals. Although serine hydrolases like Rv0045c are a large and diverse enzyme superfamily, this is the first structural confirmation of allosteric regulation of their enzymatic activity by divalent metals.  相似文献   

12.
ObjectivesAnti‐microbial peptides (AMPs) have been comprehensively investigated as a novel alternative to traditional antibiotics against microorganisms. Meanwhile, Tetrahedral DNA nanostructures (TDNs) have gained attention in the field of biomedicine for their premium biological effects and transportation efficiency as delivery vehicles. Hence, in this study, TDN/Histatin 5 (His‐5) was synthesized and the transport efficiency and anti‐fungal effect were measured to evaluate the promotion of His‐5 modified by TDNs.Materials and MethodsTetrahedral DNA nanostructures/His‐5 complex was prepared via electrostatic attraction and characterized by transmission electron microscopy (TEM), polyacrylamide gel electrophoresis (PAGE), dynamic light scattering (DLS) and electrophoretic light scattering (ELS). The anti‐fungal effect of the TDN/His‐5 complex was evaluated by determining the growth curve and colony‐forming units of C. albicans. The morphological transformation of C. albicans was observed by light microscope and scanning electron microscope (SEM). Immunofluorescence was performed, and potassium efflux was detected to mechanistically demonstrate the efficacy of TDN/His‐5.ResultsThe results showed that Histatin 5 modified by TDNs had preferable stability in serum and was effectively transported into C. albicans, leading to the increased formation of intracellular reactive oxygen species, higher potassium efflux and enhanced anti‐fungal effect against C. albicans.ConclusionsOur study showed that TDN/His‐5 was synthesized successfully. And by the modification of TDNs, His‐5 showed increased transport efficiency and improved anti‐fungal effect.  相似文献   

13.
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two‐component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high‐level β‐lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β‐lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β‐lactams. We propose that VxrAB reduces antibiotic‐induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β‐lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism''s ability to counteract diverse antibiotic‐induced stresses promotes high‐level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.  相似文献   

14.
Vitamin D deficiency has been epidemiologically linked to Alzheimer''s disease (AD) and other dementias, but no interventional studies have proved causality. Our previous work revealed that the genomic vitamin D receptor (VDR) is already converted into a non‐genomic signaling pathway by forming a complex with p53 in the AD brain. Here, we extend our previous work to assess whether it is beneficial to supplement AD mice and humans with vitamin D. Intriguingly, we first observed that APP/PS1 mice fed a vitamin D‐sufficient diet showed significantly lower levels of serum vitamin D, suggesting its deficiency may be a consequence not a cause of AD. Moreover, supplementation of vitamin D led to increased Aβ deposition and exacerbated AD. Mechanistically, vitamin D supplementation did not rescue the genomic VDR/RXR complex but instead enhanced the non‐genomic VDR/p53 complex in AD brains. Consistently, our population‐based longitudinal study also showed that dementia‐free older adults (n = 14,648) taking vitamin D3 supplements for over 146 days/year were 1.8 times more likely to develop dementia than those not taking the supplements. Among those with pre‐existing dementia (n = 980), those taking vitamin D3 supplements for over 146 days/year had 2.17 times the risk of mortality than those not taking the supplements. Collectively, these animal model and human cohort studies caution against prolonged use of vitamin D by AD patients.  相似文献   

15.
Fucosyllactoses (FL), including 2′‐fucosyllactose (2′‐FL) and 3‐fucosyllactose (3‐FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies, including (1) individual construction of the 2′/3‐FL‐producing strains through gene combination optimization of the GDP‐L‐fucose module; (2) screening of rate‐limiting enzymes (α‐1,2‐fucosyltransferase and α‐1,3‐fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate‐limiting enzymes by the RBS screening, fusion peptides and multi‐copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2′‐FL and 6.28 g/L for 3‐FL in shake flasks with a modified‐M9CA medium. Fed‐batch cultivations of the two strains generated 64.62 g/L of 2′‐FL and 40.68 g/L of 3‐FL in the 3‐L bioreactors, with yields of 0.65 mol 2′‐FL/mol lactose and 0.67 mol 3‐FL/mol lactose, respectively. This research provides a viable platform for other high‐value‐added compounds production in microbial cell factories.

An engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies. Combined with the optimization of metabolic pathways and the performance improvement of rate‐limiting enzymes, 64.62 g/L of 2 ''‐FL and 40.68 g/L of 3‐FL were finally obtained in the 3‐L bioreactors.  相似文献   

16.
17.
Alkaline phosphatase (ALP), a homo‐dimeric enzyme has been widely used in various bioassays as disease markers and enzyme probes. Recent advancements of digital bioassay revolutionized ALP‐based diagnostic assays as seen in rapid growth of digital ELISA and the emerging multiplex profiling of single‐molecule ALP isomers. However, the intrinsic heterogeneity found among ALP molecules hampers the ALP‐based quantitative digital bioassays. This study aims quantitative analysis of single‐molecule activities of ALP from Escherichia coli and reveals the static heterogeneity in catalytic activity of ALP with two distinct populations: half‐active and fully‐active portions. Digital assays with serial buffer exchange uncovered single‐molecule Michaelis–Menten kinetics of ALP; half‐active molecules have halved values of the catalytic turnover rate, k cat, and the rate constant of productive binding, k on, of the fully active molecules. These findings suggest that half‐active ALP molecules are heterogenic dimers composed of inactive and active monomer units, while fully active ALP molecules comprise two active units. Static heterogeneity was also observed for ALP with other origins: calf intestine or shrimp, showing how the findings can be generalized across species. Cell‐free expression of ALP with disulfide bond enhancer and spiked zinc ion resulted in homogenous population of ALP of full activity, implying that inactive monomer units of ALP are deficient in correct disulfide bond formation and zinc ion coordination. These findings provide basis for further study on molecular mechanism and biogenesis of ALP, and also offer the way to prepare homogenous and active populations of ALP for highly quantitative and sensitive bioassays with ALP.  相似文献   

18.
As a cis‐acting non‐depolarizing neuromuscular blocker through a nicotinic acetylcholine receptor (nAChR), cisatracurium (CAC) is widely used in anaesthesia and intensive care units. nAChR may be present on Leydig cells to mediate the action of CAC. Here, by Western blotting, immunohistochemistry and immunofluorescence, we identified that CHRNA4 (a subunit of nAChR) exists only on rat adult Leydig cells. We studied the effect of CAC on the synthesis of testosterone in rat adult Leydig cells and mouse MLTC‐1 tumour cells. Rat Leydig cells and MLTC‐1 cells were treated with CAC (5, 10 and 50 μmol/L) or nAChR agonists (50 μmol/L nicotine or 50 μmol/L lobeline) for 12 hours, respectively. We found that CAC significantly increased testosterone output in rat Leydig cells and mouse MLTC‐1 cells at 5 μmol/L and higher concentrations. However, nicotine and lobeline inhibited testosterone synthesis. CAC increased intracellular cAMP levels, and nicotine and lobeline reversed this change in rat Leydig cells. CAC may increase testosterone synthesis in rat Leydig cells and mouse MLTC‐1 cells by up‐regulating the expression of Lhcgr and Star. Up‐regulation of Scarb1 and Hsd3b1 expression by CAC was also observed in rat Leydig cells. In addition to cAMP signal transduction, CAC can induce ERK1/2 phosphorylation in rat Leydig cells. In conclusion, CAC binds to nAChR on Leydig cells, and activates cAMP and ERK1/2 phosphorylation, thereby up‐regulating the expression of key genes and proteins in the steroidogenic cascade, resulting in increased testosterone synthesis in Leydig cells.  相似文献   

19.
Yeasts Cryptococcus humicola accumulated cadmium, cobalt, and iron (~?50, 17, and 4% of the content in the medium, respectively) from the medium containing glucose, phosphate, and 2 mmol/L of metal salts. The effects of metal absorption on the levels of orthophosphate (Pi) and inorganic polyphosphate (polyP) varied for the metals under study. The levels of Pi and polyP increased in the case of cadmium and cobalt, respectively. In the case of iron, no changes in the levels of Pi and polyP were observed. Multiple DAPI-stained polyP inclusions were observed in the cytoplasm of cadmium-containing cells. The intensity of DAPI staining of the cell wall especially increased in case of cobalt and iron accumulation.  相似文献   

20.
Vascular integrity is essential for organ homeostasis to prevent edema formation and infiltration of inflammatory cells. Long non‐coding RNAs (lncRNAs) are important regulators of gene expression and often expressed in a cell type‐specific manner. By screening for endothelial‐enriched lncRNAs, we identified the undescribed lncRNA NTRAS to control endothelial cell functions. Silencing of NTRAS induces endothelial cell dysfunction in vitro and increases vascular permeability and lethality in mice. Biochemical analysis revealed that NTRAS, through its CA‐dinucleotide repeat motif, sequesters the splicing regulator hnRNPL to control alternative splicing of tight junction protein 1 (TJP1; also named zona occludens 1, ZO‐1) pre‐mRNA. Deletion of the hnRNPL binding motif in mice (Ntras ∆CA/∆CA) significantly repressed TJP1 exon 20 usage, favoring expression of the TJP1α‐ isoform, which augments permeability of the endothelial monolayer. Ntras ∆CA/∆CA mice further showed reduced retinal vessel growth and increased vascular permeability and myocarditis. In summary, this study demonstrates that NTRAS is an essential gatekeeper of vascular integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号