首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.  相似文献   

2.
BackgroundP. aeruginosa is an opportunistic pathogen that chronically infects the lungs of 85% of adult patients with Cystic Fibrosis (CF). Previously, we demonstrated that P. aeruginosa reduced wt-CFTR Cl secretion by airway epithelial cells. Recently, a new investigational drug VX-809 has been shown to increase F508del-CFTR Cl secretion in human bronchial epithelial (HBE) cells, and, in combination with VX-770, to increase FEV1 (forced expiratory volume in 1 second) by an average of 3-5% in CF patients homozygous for the F508del-CFTR mutation. We propose that P. aeruginosa infection of CF lungs reduces VX-809 + VX-770- stimulated F508del-CFTR Cl secretion, and thereby reduces the clinical efficacy of VX-809 + VX-770.ConclusionThe observation that P. aeruginosa reduces VX-809 and VX-809 + VX-770 stimulated F508del CFTR Cl secretion may explain, in part, why VX-809 + VX-770 has modest efficacy in clinical trials.  相似文献   

3.
F508del-CFTR, the most common mutation in cystic fibrosis (CF) patients, impairs CFTR trafficking to plasma membrane leading to its premature proteasomal degradation. Several post-translational modifications have been identified on CFTR with multiple roles in stability, localization and channel function, and the possibility to control the enzymes responsible of these modifications has been long considered a potential therapeutic strategy. Protein kinase CK2 has been previously suggested as an important player in regulating CFTR functions and it has been proposed as a pharmacological target in a combinatory therapy to treat CF patients. However, the real implication of CK2 in F508del-CFTR proteostasis, and in particular the hypothesis that its inhibition could be important in CF therapies, is still elusive. Here, by using immortalized cell lines, primary human cells, and knockout cell lines deprived of CK2 subunits, we do not disclose any direct correlation between F508del-CFTR proteostasis and CK2 expression/activity. Rather, our data indicate that the CK2α′ catalytic subunit should be preserved rather than inhibited for F508del rescue by the correctors of class-1, such as VX-809, disclosing new important features in CF therapeutic approaches.  相似文献   

4.
BackgroundWe analyzed the CFTR response to VX-809/VX-770 drugs in conditionally reprogrammed cells (CRC) of human nasal epithelium (HNE) from F508del/F508del patients based on SNP rs7512462 in the Solute Carrier Family 26, Member 9 (SLC26A9; MIM: 608481) gene.MethodsThe Isc-eq measurements of primary nasal epithelial cells from F508del/F508del patients (n = 12) for CFTR function were performed in micro Ussing chambers and compared with non-CF controls (n = 2). Data were analyzed according to the rs7512462 genotype which were determined by real-time PCR.ResultsThe CRC-HNE cells from F508del/F508del patients evidenced high variability in the basal levels of CFTR function. Also, the rs7512462*C allele showed an increased basal CFTR function and higher responses to VX-809 + VX-770. The rs7512462*CC + CT genotypes together evidenced CFTR function levels of 14.89% relatively to wt/wt (rs7512462*CT alone-15.29%) i.e., almost double of rs7512462*TT (7.13%). Furthermore, sweat [Cl] and body mass index of patients also evidenced an association with the rs7512462 genotype.ConclusionThe CFTR function can be performed in F508del/F508del patient-derived CRC-HNEs and its function and responses to VX-809 + VX-770 combination as well as clinical data, are all associated with the rs7512462 variant, which partially sheds light on the generally inter-individual phenotypic variability and in personalized responses to CFTR modulator drugs.  相似文献   

5.
BackgroundFor most of the >2000 CFTR gene variants reported, neither the associated disease liability nor the underlying basic defect are known, and yet these are essential for disease prognosis and CFTR-based therapeutics. Here we aimed to characterize two ultra-rare mutations - 1717-2A > G (c.1585-2A > G) and S955P (p.Ser955Pro) - as case studies for personalized medicine.MethodsPatient-derived rectal biopsies and intestinal organoids from two individuals with each of these mutations and F508del (p.Phe508del) in the other allele were used to assess CFTR function, response to modulators and RNA splicing pattern. In parallel, we used cellular models to further characterize S955P independently of F508del and to assess its response to CFTR modulators.ResultsResults in both rectal biopsies and intestinal organoids from both patients evidence residual CFTR function. Further characterization shows that 1717-2A > G leads to alternative splicing generating <1% normal CFTR mRNA and that S955P affects CFTR gating. Finally, studies in organoids predict that both patients are responders to VX-770 alone and even more to VX-770 combined with VX-809 or VX-661, although to different levels.ConclusionThis study demonstrates the high potential of personalized medicine through theranostics to extend the label of approved drugs to patients with rare mutations.  相似文献   

6.
The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.  相似文献   

7.
F508del-CFTR, the most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, disrupts intracellular trafficking leading to cystic fibrosis (CF). The trafficking defect of F508del-CFTR can be rescued by simultaneous inactivation of its four RXR motifs (4RK). Proteins involved in the F508del-CFTR trafficking defect and/or rescue are therefore potential CF therapeutic targets. We sought to identify these proteins by investigating differential proteome modulation in BHK cells over-expressing wt-CFTR, F508del-CFTR or the revertant F508del/4RK-CFTR. By 2-dimensional electrophoresis-based proteomics and western blot approaches we demonstrated that over-expression of F508del/4RK-CFTR modulates the expression of a large number of proteins, many of which are reported interactors of CFTR and/or 14-3-3 with potential roles in CFTR trafficking. GRP78/BiP, a marker of ER stress and unfolded protein response (UPR), is up-regulated in cells over-expressing either F508del-CFTR or F598del/4RK-CFTR. However, over-expression of F508del/4RK-CFTR induces the up-regulation of many other UPR-associated proteins (e.g. GRP94, PDI, GRP75/mortalin) and, interestingly, the down-regulation of proteasome components associated with CFTR degradation, such as the proteasome activator PA28 (PSME2) and COP9 signalosome (COPS5/CSN5). Moreover, the F508del-CFTR-induced proteostasis imbalance, which involves some heat shock chaperones (e.g. HSP72/Hpa2), ER-EF-hand Ca2+-binding proteins (calumenin) and the proteasome activator PA28 (PSME2), tends to be ‘restored’, i.e., in BHK cells over-expressing F508del/4RK-CFTR those proteins tend to have expression levels similar to the wild-type ones. These findings indicate that a particular cellular environment orchestrated by the UPR contributes to and/or is compatible with F508del/4RK-CFTR rescue.  相似文献   

8.
《Autophagy》2013,9(9):1431-1434
Cystic fibrosis (CF) is most frequently due to homozygous ΔF508-CFTR mutation. The ΔF508-CFTR protein is unstable in the plasma membrane (PM), even if it is rescued by pharmacological agents that prevent its intracellular retention and degradation. Restoring defective autophagy in CF airways by proteostasis regulators (such as cystamine and its reduced form, cysteamine) can rescue and stabilize ΔF508-CFTR at the PM, thus enabling the action of CFTR potentiators, which are pharmacological agents that stimulate the function of CFTR as an ion channel. The effects of cystamine extend for days (in vitro) and weeks (in vivo) beyond washout, suggesting that once peripheral proteostasis has been re-established, PM-resident ΔF508-CFTR sustains its own stability. We demonstrated that the pharmacological inhibition of wild-type CFTR [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette subfamily C, member 7)], in bronchial epithelial cells decreases the stability of the CFTR protein by inhibiting autophagy, elevating the abundance of SQSTM1/p62 and its interaction with CFTR at the PM, increasing the ubiqutination of CFTR, stimulating the lysosomal degradation of CFTR and avoiding its recycling. All these effects could be inhibited by cystamine. Moreover, CFTR-sufficient epithelia generate permissive conditions for incorporating ΔF508-CFTR into the PM and stabilizing it at this location. These results provide the rationale for a combination therapy of CF in which pretreatment with cystamine or cysteamine enables the later action of CFTR potentiators.  相似文献   

9.
We have screened 175 patients for molecular defects in the cystic fibrosis transmembrane conductance regulator (CFTR) gene using nondenaturing polyacrylamide gel electrophoresis (PAGE), denaturing gradient gel electrophoresis (DGGE), and sequencing. Six different mutations (F508del, G542X, 621+1G --> T, 2789+5G --> A, R1070Q, and S466X) accounted for 79.71% of CF alleles, with the F508del mutation showing a frequency of 72.28%. Another 12 mutations (R334W, 2184insA, I507del, 1525-1G --> A, E585X, R75X, M1I, 457TAT --> G, 574delA, 2723delTT, A120T, and 2907delTT) covered an additional 3.36%. A novel mutation (2723delTT) was found in one CF patient (F508del/2723delTT). Thus, a total of 18 mutations cover 82.57% of CF alleles. During our study, 72% of families at risk for having a CF child were found to be fully informative for prenatal diagnosis. Prenatal diagnosis was performed on 56 families; 76 analyses resulting in 16 affected, 38 carriers, and 22 healthy fetuses. These results imply that the molecular basis of CF in Serbia and Montenegro is highly heterogeneous, as is observed in other eastern and southern European populations. Because we detected more then 80% of CFTR alleles, results could be used for planning future screening and appropriate genetic counseling programs in our country.  相似文献   

10.
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a 'chaperone trap'. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF.  相似文献   

11.
Mutational analysis of the cystic fibrosis transmembrane regulator (CFTR) gene was performed in 98 unrelated CF chromosomes from 49 Lithuanian CF patients through a combined approach in which the p.F508del mutation was first screened by allele-specific PCR while CFTR mutations in nonp.F508del chromosomes have been screened for by denaturing gradient gel electrophoresis analysis. A CFTR mutation was characterized in 62.2% of CF chromosomes, two of which (2.0%) have been previously shown to carry a large gene deletion CFTRdele2,3(21 kb). The most frequent Lithuanian CF mutation is p.F508del (52.0%). Seven CFTR mutations, p.N1303K (2.0%), p.R75Q (1.0%), p.G314R (1.0%), p.R553X (4.2%), p.W1282X (1.0%), and g.3944delGT (1.0%), accounted for 10.1% of Lithuanian CF chromosomes. It was not possible to characterize 35.8% of the CF Lithuanian chromosomes. Analysis of intron 8 (TG)mTn and M470V polymorphic loci did not permit the characterization of the CFTR dysfunction underlying the CF phenotype in the patients for which no CFTR mutation was identified. Thus, screening of the eight CFTR mutations identified in this study and of the large deletion CFTRdele2,3(21 kb) allows the implementation of an early molecular or confirmatory CF diagnosis for 65% of Lithuanian CF chromosomes.  相似文献   

12.
Protein homeostasis (proteostasis) generates and maintains individual proteins in their folded and functional-competent states. The components of the cellular proteostasis machinery also dictate the functional lifetime of a protein by constantly regulating its conformation, concentration and subcellular location. The autosomal recessive disease cystic fibrosis (CF) is caused by a proteostasis-defect in CF transmembrane conductance regulator (CFTR). The most common CF mutation leading to this proteostasis-defect is the deletion of a phenylalanine residue at position 508 (ΔF508) of the CFTR protein. This ΔF508-CFTR protein is prone to aberrant folding, increased ER-associated degradation, atypical intracellular trafficking and reduced stability at the apical membrane. This ΔF508-CF proteostasis-defect leads to an obstructive lung disease characterized by impaired ion transport in airway epithelial cells, mucus buildup in air space and chronic airway inflammation. We assess here whether correcting the underlying defect in ΔF508-CFTR protein processing using therapeutic proteostasis regulators can treat chronic CF lung disease. As a proof of concept, recent studies support that the selective modulation of mutant-CFTR proteostasis may offer promising therapies to reverse chronic CF lung disease.  相似文献   

13.
14.
Objectives: To provide a simple method to make a stable ΔF508-CFTR-expressing T84 cell line that can be used as an efficient screening model system for ΔF508-CFTR rescue. Results: CFTR knockout cell lines were generated by Cas9 with a single-guide RNA (sgRNA) targeting exon 1 of the CFTR genome, which produced indels that abolished CFTR protein expressions. Next, stable ΔF508-CFTR expression was achieved by genome integration of ΔF508-CFTR via the lentivirus infection system. Finally, we showed functional rescue of ΔF508-CFTR not only by growing the cells at a low temperature, but also incubating with VX-809, a ΔF508-CFTR corrector, in the established T84 cells expressing ΔF508-CFTR. Conclusions: This cell system provides an appropriate screening platform for rescue of ΔF508-CFTR, especially related to protein folding, escaped from endoplasmic-reticulum-associated protein degradation, and membrane transport.  相似文献   

15.
The F508del mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cause of cystic fibrosis (CF). Both CF patients and F508del carriers have decreased blood pressure. While this has been attributed to salt depletion, recent studies have shown F508del expression interferes with smooth muscle cell calcium mobilization. We tested the hypothesis that carriers of the F508del mutation have lower adult blood pressures and reduced aortic contractility without a reduction in circulating blood volume. By radiotelemetry, F508del heterozygous mice had significantly lower arterial pressures than wild-type C57BL/6 controls, with the greatest effect seen at the time of dark-to-light cycle transition (mean difference of 10 mmHg). To replicate the vascular effects of sympathetic arousal, isoproterenol and epinephrine were co-infused, and F508del mice again had significantly reduced arterial pressures. Aortas isolated from F508del heterozygous mice had significantly decreased constriction to noradrenaline (0.9±0.2 versus 2.9±0.7 mN). Inhibition of wild-type CFTR or the inositol triphosphate receptor replicated the phenotype of F508del aortas. CFTR carrier status did not alter circulating blood volume. We conclude the CFTR-F508del mutation decreases aortic contractility and lowers arterial pressures. As a cAMP-activated chloride channel that facilitates calcium mobilization, we speculate wild-type CFTR co-activation during adrenergic receptor stimulation buffers the vasodilatory response to catecholamines, and loss of this compensatory vasoconstrictor tone may contribute to the lower arterial pressures seen in heterozygote carriers of a CFTR-F508del mutation.  相似文献   

16.
The intracellular localization of cystic fibrosis transmembrane conductance regulator (CFTR) in native tissues is a major issue in the study of mutation, processing, and trafficking effects in CFTR and in the evaluation of therapeutic strategies in cystic fibrosis (CF). This work evaluated the applicability of ten different antibodies (Abs) under various fixation techniques for CFTR localization in fresh-brushed nasal epithelial cells collected from CF patients homozygous for F508del and control individuals. In parallel, the same Ab panel was also tested on BHK cell lines overexpressing wild-type or F508del CFTR. The Abs MATG1061, 169, Lis1, MP-CT1, CC24-R, MAB25031, and MAB1660 gave the best detection of CFTR in the apical region (AR) of nasal tall columnar epithelial (TCE) cells. The labeling pattern of these Abs was consistent with the postulated processing defect of F508del CFTR because only a minority of CF TCE cells present CFTR in the AR. In contrast, M3A7, MM13-4, and L12B4 weakly react with the AR and stain almost exclusively a cis-Golgi-like structure in the majority of CF and non-CF airway cells. In BHK cells, all the Abs enabled distinction between wild-type CFTR localization in cell membrane from F508del CFTR, which in these cells is exclusively located in the endoplasmic reticulum.  相似文献   

17.
Cystic fibrosis (CF), the most common lethal genetic disease in the Caucasian population, is caused by loss-of-function mutations of the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated plasma membrane chloride channel. The most common mutation, deletion of phenylalanine 508 (ΔF508), impairs CFTR folding and, consequently, its biosynthetic and endocytic processing as well as chloride channel function. Pharmacological treatments may target the ΔF508 CFTR structural defect directly by binding to the mutant protein and/or indirectly by altering cellular protein homeostasis (proteostasis) to promote ΔF508 CFTR plasma membrane targeting and stability. This review discusses recent basic research aimed at elucidating the structural and trafficking defects of ΔF508 CFTR, a prerequisite for the rational design of CF therapy to correct the loss-of-function phenotype.  相似文献   

18.
We showed elsewhere that the pancreatic function status of cystic fibrosis (CF) patients could be correlated to mutations in the CF transmembrane conductance regulator (CFTR) gene. Although the majority of CF mutations--including the most common, delta F508--strongly correlated with pancreatic insufficiency (PI), approximately 10% of the mutant alleles may confer pancreatic sufficiency (PS). To extend this observation, genomic DNA of 538 CF patients with well-documented pancreatic function status were analyzed for a series of known mutations in their CFTR genes. Only 20 of the 25 mutations tested were found in this population. They accounted for 84% of the CF chromosomes, with delta F508 being the most frequent (71%), and the other mutations accounted for less than 5% each. A total of 30 different, complete genotypes could be determined in 394 (73%) of the patients. The data showed that each genotype was associated only with PI or only with PS, but not with both. This result is thus consistent with the hypothesis that PI and PS in CF are predisposed by the genotype at the CFTR locus; the PS phenotype occurs in patients who have one or two mild CFTR mutations, such as R117H, R334W, R347P, A455E, and P574H, whereas the PI phenotype occurs in patients with two severe alleles, such as delta F508, delta I507, Q493X, G542X, R553X, W1282X, 621 + 1G----T, 1717-1G----A, 556delA, 3659delC, I148T, G480C, V520F, G551D, and R560T.  相似文献   

19.
The aim of this study was to investigate the polymicrobial communities in an adult Cystic Fibrosis population stratified by gender and the most common CFTR mutation, F508del. In this pilot study, DNA was extracted from sputum samples of 29 adult patients (16 male: 13 female) with an F508del mutation in a stable clinical state. Universal primers were used to amplify DNA from bacterial and fungal communities and the resulting fragments were analysed by denaturing gradient gel electrophoresis. Bacterial profiles showed a significant effect of gender (P = 0.046) and P. aeruginosa carriage (P = 0.034) on community structure. Bacterial communities were found to be randomly assembled. Fungal community analysis found that F508del homozygous patients had a greater diversity than heterozygous patients (P = 0.007). This study indicates that the bacterial lung communities of adult CF patients are randomly assembled but have distinct gender based differences. Furthermore, the fungal communities colonising the CF lung are more diverse in F508 homozygotes. This is the first paper to identify a reduced bacterial diversity in female patients with CF and to implicate more severe CFTR genotypes with increased risk of infection with multiple fungal species.  相似文献   

20.
Mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) cause CF (cystic fibrosis), a fatal genetic disease commonly leading to airway obstruction with recurrent airway inflammation and infection. Pulmonary obstruction in CF has been linked to the loss of CFTR function as a regulated Cl- channel on the lumen-facing membrane of the epithelium lining the airways. We have learned much about the molecular basis for nucleotide- and phosphorylation-dependent regulation of channel activity of the normal (wild-type) version of the CFTR protein through electrophysiological studies. The major CF-causing mutation, F508del-CFTR, causes the protein to misfold and be retained in the ER (endoplasmic reticulum). Importantly, recent studies in cell culture have shown that retention in the ER can be 'corrected' through the application of certain small-molecule modulators and, once at the surface, the altered channel function of the major mutant can be 'potentiated', pharmacologically. Importantly, two such small molecules, a 'corrector' (VX-809) and a 'potentiator' (VX-770) compound are undergoing clinical trial for the treatment of CF. In this chapter, we describe recent discoveries regarding the wild-type CFTR and F508del-CFTR protein, in the context of molecular models based on X-ray structures of prokaryotic ABC (ATP-binding cassette) proteins. Finally, we discuss the promise of small-molecule modulators to probe the relationship between structure and function in the wild-type protein, the molecular defects caused by the most common mutation and the structural changes required to correct these defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号