首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

2.
Summary The direction of the autumn and spring migration of short- and long-distance migrants over Frankfurt and spring migration of short-distance migrants over Hannover were studied by radar. For long-distance migrants, a comparison with results obtained from the Swiss Lowland revealed no difference in the direction of autumn migration but a 35° difference in the direction of spring migration. In Frankfurt the migration was more northerly. The difference in the migratory direction of short-distance migrants between central Germany and the Swiss Lowland ranged from 10° to 15° in spring and to 9° in autumn. The direction of spring migration can be understood as a simple 180° reversal of autumn migration in short-distance migrants, but not in long-distance migrants. The difference in the direction of the migratory axis (about 30°) among long-distance migrants between autumn and spring indicates that such birds follow different routes during their two seasonal, migratory journeys. The short- and long-distance migrants flew a similar direction in autumn. In spring, the short-distance migrants flew considerably more easterly compared to long-distance migrants. Wind influences, because of the seasonality of cyclonic weather systems, was much more likely to affect the migration of short-distance migrants in both autumn and spring. The effect of strong crosswinds on the direction of spring migration was examined.
Zusammenfassung Mittlere Zugrichtung und Windeinfluß auf Herbst- und Frühjahrszug von Kurz- und Langstreckenziehern wurden über Frankfurt und über dem Raum Hannover (nur Frühjahrszug) mit Hilfe von Radarbeobachtungen untersucht. Der Vergleich mit Ergebnissen vom Alpenrand ergab übereinstimmende Mittelrichtungen für den Herbstzug der Langstrecken-zieher, aber eine deutliche Differenz für dem Frühjahrszug (35°). In Frankfurt war der Zug stärker nach N gerichtet. Die Unterschiede bei den Kurzstreckenziehern betrugen im Frühjahr 10° bzw. 15° und im Herbst 9°. Der Frühjahrszug kann als Richtungsumkehrung des Herbstzuges bei den Kurzstreckenziehern, aber nicht bei den Langstreckenziehern interpretiert werden. Die Differenz zwischen den Zugachsen von Herbst- und Frühjahrszug betrug 30°. Sie wird als Indiz für unterschiedliche Zugrouten auf dem Herbst- und Frühjahrszug gewertet. Kurz- und Langstreckenzieher hielten auf dem Herbstzug ähnliche Zugrichtungen ein. Im Frühjahr zogen die Kurzstreckenzieher wesentlich stärker nach E als die Langstreckenzieher. Der Windeinfluß machte sich wegen der Saisonalität der Zyklonentätigkeit sowohl beim Frühjahrs- als auch beim Herbstzug der Kurzstreckenzieher stärker bemerkbar als bei den Langstreckenzieher. Der Einfluß der starken Seitenwinde auf die Richtungen des Frühjahrszuges wurde untersucht.
  相似文献   

3.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

4.
Monitoring studies find that the timing of spring bird migration has advanced in recent decades, especially in Europe. Results for autumn migration have been mixed. Using data from Powdermill Nature Reserve, a banding station in western Pennsylvania, USA, we report an analysis of migratory timing in 78 songbird species from 1961 to 2006. Spring migration became significantly earlier over the 46-year period, and autumn migration showed no overall change. There was much variation among species in phenological change, especially in autumn. Change in timing was unrelated to summer range (local vs. northern breeders) or the number of broods per year, but autumn migration became earlier in neotropical migrants and later in short-distance migrants. The migratory period for many species lengthened because late phases of migration remained unchanged or grew later as early phases became earlier. There was a negative correlation between spring and autumn in long-term change, and this caused dramatic adjustments in the amount of time between migrations: the intermigratory periods of 10 species increased or decreased by > 15 days. Year-to-year changes in timing were correlated with local temperature (detrended) and, in autumn, with a regional climate index (detrended North Atlantic Oscillation). These results illustrate a complex and dynamic annual cycle in songbirds, with responses to climate change differing among species and migration seasons.  相似文献   

5.
The migratory patterns of birds have been the focus of ecologists for millennia. What behavioural traits underlie these remarkably consistent movements? Addressing this question is central to advancing our understanding of migratory flight strategies and requires the integration of information across levels of biological organisation, e.g. species to communities. Here, we combine species‐specific observations from the eBird citizen‐science database with observations aggregated from weather surveillance radars during spring migration in central North America. Our results confirm a core prediction of migration theory at an unprecedented national scale: body mass predicts variation in flight strategies across latitudes, with larger‐bodied species flying faster and compensating more for wind drift. We also find evidence that migrants travelling northward earlier in the spring increasingly compensate for wind drift at higher latitudes. This integration of information across biological scales provides new insight into patterns and determinants of broad‐scale flight strategies of migratory birds.  相似文献   

6.
Migration is fundamental in the life of many birds and entails significant energetic and time investments. Given the importance of arrival time in the breeding area and the relatively short period available to reproduce (particularly at high latitudes), it is expected that birds reduce spring migration duration to a greater extent than autumn migration, assuming that pressure to arrive into the wintering area might be relaxed. This has previously been shown for several avian groups, but recent evidence from four tracked Icelandic whimbrels Numenius phaeopus islandicus, a long distance migratory wader, suggests that this subspecies tends to migrate faster in autumn than in spring. Here, we 1) investigate differences in seasonal migration duration, migration speed and ground speed of whimbrels using 56 migrations from 19 individuals tracked with geolocators and 2) map the migration routes, wintering and stopover areas for this population. Tracking methods only provide temporal information on the migration period between departure and arrival. However, migration starts with the fuelling that takes place ahead of departure. Here we estimate the period of first fuelling using published fuel deposition rates and thus explore migration speed using tracking data. We found that migration duration was shorter in autumn than in spring. Migration speed was higher in autumn, with all individuals undertaking a direct flight to the wintering areas, while in spring most made a stopover. Wind patterns could drive whimbrels to stop in spring, but be more favourable during autumn migration and allow a direct flight. Additionally, the stopover might allow the appraisal of weather conditions closer to the breeding areas and/or improve body condition in order to arrive at the breeding sites with reserves.  相似文献   

7.
The knowledge of migration systems in long-distance regular migrants is in many cases extensive. Our understanding of the migratory characteristics of partial migrants, on the other hand, is far more rudimentary. We investigated migratory characteristics of partially migratory Blue Tits Cyanistes caeruleus using ringing recoveries of Swedish birds, to answer questions about geographic migration patterns, age-specific migrations, migration speeds and synchrony of movements. Median migration distance of Swedish Blue Tits was 82 km, with a main autumn direction in the sector between S and W (large directional scatter). Northerly and southerly populations did not differ in migration directions or distances, suggesting chain migration to be the general pattern. A larger proportion of adult Blue Tits remained near the breeding grounds during winter than was the case for juveniles. Some of the migrating birds (17%) seemed not to return in spring but stayed to breed closer to the winter area. Swedish Blue Tits show an exceptionally slow migration speed (median 13 km/day), among the slowest speeds recorded for any migrant bird. The Blue Tit represents an extreme case of diffuse, short and slow bird migration.  相似文献   

8.
    
With a new standardized moon-watching method nocturnal bird migration was studied over southern Germany, the area of the Alps and northern Italy in autumn 1994 and spring 1995. Simultaneous observations from more than 300 sites showed that in autumn broad front migration was deviated and concentrated along the northern border of the Alps. Migration was concentrated in the Swiss lowlands by a factor 2 to 3 compared to southern Germany. Notable concentrations occurred also along the upper Rhine valley. Even under clear sky only about 20 to 30 % of the migrants continued their flight over the mountain ridges towards Italy. South of the Alps an important part of migration consisted of birds flying westwards, parallel to the border of the mountain ranges. Similar migratory intensity in autumn and in spring over northern Italy suggest concentrated spring migration south of the Alps. This idea is based on the fact that intensity of observed migration is lower to the north of the Alps and in general the expected density of migration is lower in spring (radar data and few moonwatching data). In principle, results showed that confronted with a mountain range (Vosges, Jura, Alps), most migrants prefer to deviate slightly from their innate migratory direction, instead of climbing up above the ridges, where they might encounter unfavourable winds.  相似文献   

9.
The blackcap Sylvia atricapilla shows a complex migratory pattern and is a suitable species for the studies of morphological migratory syndrome, including adaptations of wing shape to different migratory performance. Obligate migrants of this species that breed in northern, central, and Eastern Europe differ by migration distance and some cover shorter distance to the wintering grounds in the southern part of Europe/North Africa or the British Isles, although others migrate to sub-Saharan Africa. Based on ˃40 years of ringing data on blackcaps captured during autumn migration in the Southern Baltic region, we studied age- and sex-related correlations in wing pointedness and wing length of obligate blackcap migrants to understand the differences in migratory behavior of this species. Even though the recoveries of blackcaps were scarce, we reported some evidence that individuals which differ in migration distance differed also in wing length. We found that wing pointedness significantly increased with an increasing wing length of migrating birds, and adults had longer and more pointed wings than juvenile birds. This indicates stronger antipredator adaptation in juvenile blackcaps than selection on flight efficiency, which is particularly important during migration. Moreover, we documented more pronounced differences in wing length between adult and juvenile males and females. Such differences in wing length may enhance a faster speed of adult male blackcaps along the spring migration route and may be adaptive when taking into account climatic effects, which favor earlier arrival from migration to the breeding grounds.  相似文献   

10.
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.  相似文献   

11.
The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio, a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d(-1)) than during spring (233 km d(-1)). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.  相似文献   

12.
Current ideas about the evolution of bird migration equate its origin with the first appearance of fully migratory populations, and attribute its evolution to a selective advantage generated by increased breeding success, gained through temporary emigration from resident populations to breed in under-exploited seasonal areas. I propose an alternative hypothesis in which migration first appears as a temporary directional shift away from the breeding site outside the reproductive period, in response to seasonal variation in the direction and/or severity of environmental gradients. Fully migratory populations then appear through either extinction of sedentary phenotypes, or colonisation of vacant seasonal areas by migrants. Where colonisation occurs, resident ancestral populations can be driven to extinction by competition from migrants which invade their range outside the breeding season, resulting in fully migratory species. An analogous process drives the evolution of migration between high latitudes and the tropics, since extension of breeding range into higher latitudes may drive low latitude populations to extinction, resulting in an overall shift of breeding range. This process can explain reverse latitudinal gradients in avian diversity in the temperate zone, since the breeding ranges of migratory species concentrate in latitudes where they enjoy the highest breeding success. Near absence of forest-dwelling species among Palaearctic-African migrants is attributable to the lack of forest in northern Africa for much of the Tertiary, which has precluded selection both for southward extension of migration by west Palaearctic forest species, and northward breeding colonisation by African forest species.  相似文献   

13.
1. Migratory behaviour can result in reduced prevalence of pathogens in host populations. Two hypotheses have been proposed to explain this relationship: (i) ‘migratory escape’, where migrants benefit from escaping pathogen accumulation in contaminated environments; and (ii) ‘migratory culling’, where the selective removal of infected individuals occurs during migration. 2. In the host–parasite system between the monarch butterfly (Danaus plexippus Linn.) and its obligate protozoan parasite Ophryocystis elektroscirrha (OE), there is evidence to support both hypotheses, particularly during the monarchs' autumn migration. However, these processes can operate simultaneously and could vary throughout the monarchs' annual migratory cycle. Assessing the relative strength for each hypothesis has not previously been done. 3. To evaluate both hypotheses, parasite infection prevalence was examined in monarchs sampled in eastern North America during April–September, and stable isotopes (δ2H, δ13C) were used to estimate natal origin and infer migration distance. There was stronger support for the migratory escape hypothesis, wherein infection prevalence increased over the breeding season and was higher at southern latitudes, where the breeding season tends to be longer compared with northern latitudes. Little support was found for the migratory culling hypothesis, as infection prevalence was similar whether monarchs travelled shorter or longer distances. 4. These results suggest that migration allows individuals to escape parasites not only during the autumn, as shown in previous work, but during the monarchs' spring and summer movements when they recolonise the breeding range. These results imply a potential fitness advantage to monarchs that migrate further north to exploit parasite‐free habitats.  相似文献   

14.
Migratory animals are affected by various factors during their journeys, and the study of animal movement by radars has been instrumental in revealing key influences of the environment on flying migrants. Radars enable the simultaneous tracking of many individuals of almost all sizes within the radar range during day and night, and under low visibility conditions. We review how atmospheric conditions, geographic features and human development affect the behavior of migrating insects and birds as recorded by radars. We focus on flight initiation and termination, as well as in‐flight behavior that includes changes in animal flight direction, speed and altitude. We have identified several similarities and differences in the behavioral responses of aerial migrants including an overlooked similarity in the use of thermal updrafts by very small (e.g. aphids) and very large (e.g. vultures) migrants. We propose that many aerial migrants modulate their migratory flights in relation to the interaction between atmospheric conditions and geographic features. For example, aerial migrants that encounter crosswind may terminate their flight or continue their migration and may also drift or compensate for lateral displacement depending on their position (over land, near the coast or over sea). We propose several promising directions for future research, including the development and application of algorithms for tracking insects, bats and large aggregations of animals using weather radars. Additionally, an important contribution will be the spatial expansion of aeroecological radar studies to Africa, most of Asia and South America where no such studies have been undertaken. Quantifying the role of migrants in ecosystems and specifically estimating the number of departing birds from stopover sites using low‐elevation radar scans is important for quantifying migrant–habitat relationships. This information, together with estimates of population demographics and migrant abundance, can help resolve the long‐term dynamics of migrant populations facing large‐scale environmental changes.  相似文献   

15.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

16.
Abstract. 1. The spring migration of the oriental armyworm moth, Mythimna separata (Walker), and other insects into northeastern China was observed by radar at a site in central Jilin province. Samples of the migrants were obtained in a net flown from a kite, and M.separata populations in the surrounding region were monitored with a trap network. 2. The radar regularly detected echoes which were of the type characteristic of large insects, and three out of four large insects in the aerial samples were noctuid moths, including one M.separata. Catches of armyworm moths in the regional trap network peaked during the period of radar observations. 3. Migration occurred at night. It commenced with a take-off flight at dusk and generally continued until dawn, with numbers often being highest around midnight. Most migration took place at altitudes below 500 m, with strong layer concentrations forming at 200–400 m during the middle part of some nights. 4. Migration was approximately downwind. The net movement was overwhelmingly to the northeast because southwesterly winds occurred most frequently and were relatively strong, and because migration was more intense and prolonged on these winds. Orientation tended to be to the left of the downwind direction, and was most often to the north or northeast. 5. Migration into northeastern China was accomplished in a series of night-time movements of 100–300 km rather than by a single non-stop flight. 6. The net movement of insects towards the northeast was sufficient to produce the observed regional infestation of M.separata moths. Oviposition by immigrant armyworm moths in vulnerable crops would have been at a level where economically significant damage would be expected from the resulting larval population. 7. Analogous springtime migrations of noctuids leading to temporary colonizations of habitats at higher latitudes occur in other continents. Such colonizations may be unproductive if, as appears possibly the case for northeastern China, prevailing winds later in the season are generally unfavourable for a return migration towards overwintering areas at lower latitudes.  相似文献   

17.
For migratory birds optimal timing of the onset of reproduction is vital, especially when suitable conditions for reproduction occur only for a short while during the year. With increasing latitude the suitable period becomes shorter and we expect the organization of annual cycle to be more synchronized to the local conditions across individuals of same population. This should result in low variation of arrival and departure date in breeding sites at higher latitudes. We quantify the temporal and geographical variation in pre- and post-breeding migration between individuals from four different populations of alpine swifts Tachymarptis melba along a latitudinal gradient. We tracked 215 individuals in three years with geolocators. The two western and two eastern populations showed separate migratory flyways and places of residence in Africa. Length of stay at the breeding sites was negatively correlated with latitude and differed by more than a month between populations. Duration of migration was similarly short in all populations (median 6.2 days in autumn and 8.7 days in spring). However, variation in timing of migration was unrelated to latitude and individuals everywhere arrived in the same asynchrony at the breeding site.  相似文献   

18.
Wind has a significant yet complex effect on bird migration speed. With prevailing south wind, overall migration is generally faster in spring than in autumn. However, studies on the difference in airspeed between seasons have shown contrasting results so far, in part due to their limited geographical or temporal coverage. Using the first full‐year weather radar data set of nocturnal bird migration across western Europe together with wind speed from reanalysis data, we investigate variation of airspeed across season. We additionally expand our analysis of ground speed, airspeed, wind speed, and wind profit variation across time (seasonal and daily) and space (geographical and altitudinal). Our result confirms that wind plays a major role in explaining both temporal and spatial variabilities in ground speed. The resulting airspeed remains relatively constant at all scales (daily, seasonal, geographically and altitudinally). We found that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this number is not significant compared to the biases and limitation of weather radar data. The results of the analysis can be used to further investigate birds'' migratory strategies across space and time, as well as their energy use.  相似文献   

19.
Evidences for phenological changes in response to climate change are now numerous. One of the most documented changes has been the advance of spring arrival dates in migratory birds. However, the effects of climate change on subsequent events of the annual cycle remain poorly studied and understood. Moreover, the rare studies on autumn migration have mainly concerned passerines. Here, we investigated whether raptor species have changed their autumn migratory phenology during the past 30 years at one of the most important convergent points of western European migration routes in France, the Organbidexka pass, in the Western Pyrenees. Eight out of the 14 studied raptor species showed significant phenological shifts during 1981–2008. Long-distance migrants displayed stronger phenological responses than short-distance migrants, and advanced their mean passage dates significantly. As only some short-distance migrants were found to delay their autumn migration and as their trends in breeding and migrating numbers were not significantly negative, we were not able to show any possible settling process of raptor populations. Negative trends in numbers of migrating raptors were found to be related to weaker phenological responses. Further studies using data from other migration sites are necessary to investigate eventual changes in migration routes and possible settling process.  相似文献   

20.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号