首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

2.
PurposeTo find the optimal dose weighting for hybrid volumetric modulated arc therapy (H-VMAT), a combination of conventional 3DCRT and VMAT plans for left sided chest wall and supraclavicular radiation therapy.Methods & materials20 left-sided breast cancer patients who received adjuvant radiotherapy were considered for this study. To find the optimal weighting, 5 H-VMAT plans were generated for each study case by combining different dose proportions of 3DCRT and VMAT plans including: 90% 3DCRT/10% VMAT, 80% 3DCRT/20% VMAT, 70% 3DCRT/30% VMAT, 60% 3DCRT/40% VMAT, 50% 3DCRT/50% VMAT. Further field-in-field, optimal H-VMAT and VMAT alone plans were compared.ResultsAll H-VMAT plans achieved the expected target coverage. A higher conformity index was achieved for 50% 3DCRT/50% VMAT plan, while better homogeneity index was achieved for 80% 3DCRT/20% VMAT plan. Mean and low doses were less in 90% 3DCRT/10% VMAT plan. Compared with other proportions, 80% 3DCRT/20% VMAT and 70% 3DCRT/30% VMAT weighted H-VMAT plans achieved balanced results for PTVs and OARs.ConclusionThe optimal dose mixture for H-VMAT technique is 70% to 80% for 3DCRT and 20% to 30% for VMAT. The optimal H-VMAT achieved balanced results for the PTVs and OARs compared with field-in-field and VMAT alone plans.  相似文献   

3.
BackgroundThe present study was to investigate the usefulness of deep inspiration breath hold (DIBH) in bilateral breast patients using 6MV flattened beam (FB) and flattening filter free beam (FFFB).Materials and methodsTwenty bilateral breast cancer patients were simulated, using left breast patients treated with DIBH technique. CT scans were performed in the normal breathing (NB) and DIBH method. Three-dimensional conformal radiotherapy (3DCRT) and volumetric arc therapy (VMAT) plans were generated.ResultsIn our study the best organ at risk (OAR) sparing is achieved in the 3DCRT DIBH plan with adequate PTV coverage (V95 ≥ 47.5 Gy) as compared to 6MV FB and FFFB VMAT DIBH plans. The DIBH scan plan reduces the heart mean dose significantly at the rate of 49% in 3DCRT (p = 0.00) and 22% in VMAT (p = 0.010). Similarly, the DIBH scan plan produces lesser common lung mean dose of 18% in 3DCRT (p = 0.011) and 8% in VMAT (0.007) as compared to the NB scan. The conformity index is much better in VMAT FB (1.04 ± 0.04 vs. 1.04 ± 0.05), p =1.00 and VMAT FFFB (1.04 ± 0.05 vs. 1 ± 0.24, p = 0.345) plans as compared to 3DCRT (1.63 ± 0.2 vs. 1.47 ± 0.28, p = 0.002). The homogeneity index of all the plans is less than 0.15. The global dmax is more in VMAT FFFB DIBH plan (113.7%). The maximum MU noted in the NB scan plan (478 vs. 477MU, 1366 vs. 1299 MU and 1853 vs. 1788 MU for 3DCRT, VMAT FB and VMAT FFFB technique as compared to DIBH scan.ConclusionWe recommend that the use of DIBH techniques for bilateral breast cancer patients significantly reduces the radiation doses to OARs in both 3DCRT and VMAT plans.  相似文献   

4.
PurposeThis study evaluated the dose distribution and homogeneity of four different types of intensity-modulated radiotherapy (IMRT) in comparison with standard wedged tangential-beam three-dimensional conformal radiotherapy (3DCRT) of the left breast in patients who had undergone lumpectomy.Materials and methodsFive radiotherapy treatment plans, including 3DCRT, forward-planned IMRT (for-IMRT), inverse IMRT (inv-IMRT), helical tomotherapy (HT) and volumetric-modulated arc therapy (VMAT), were created for 15 consecutive patients.ResultsAll modalities presented similar target coverage. Target max doses were reduced with for-IMRT compared to 3DCRT, and these doses were further reduced with inv-IMRT and HT. HT resulted in the lowest max doses delivered to the heart, left anterior descending artery (LAD), and ipsilateral lung, but had higher mean, max, and low doses delivered to contralateral breast. HT resulted in increased low doses to a large volume of healthy tissue. Compared to other techniques, all inverse-planned modalities significantly improved conformity number; however, VMAT had worse homogeneity. The for-IMRT plan significantly lowered monitor unit (MU) compared to the inverse-planned techniques.ConclusionAll modalities evaluated provide adequate coverage of the whole breast. For-IMRT improves target homogeneity compared with 3DCRT, but to a lesser degree than the inverse-planned inv-IMRT and HT. HT decreases the ipsilateral OAR volumes receiving higher and mean doses with an increase in the volumes receiving low doses, which is known to lead to an increased rate of radiation-induced secondary malignancies.  相似文献   

5.
BackgroundThe purpose of this study was to evaluate dosimetric and radiobiological difference between volumetric modulated arc therapy (VMAT) and 3-dimensional conformal radiotherapy (3DCRT) in organ at risk (OAR) lumbosacral plexus (LSP) in cervical cancer patients.Materials and methods30 patients of cervical cancer who were treated using 3DCRT or VMAT along with chemotherapy followed by brachytherapy were enrolled. LSP was delineated retrospectively. Dosimetric and radiobiological difference was evaluated. Patients were followed for radiation induced lumbosacral plexopathy (RILSP).ResultsMedian follow-up was 12 months (3–16 months). 53.3% of patients were treated by 3DCRT and 46.7% by VMAT. The mean (±SD) LSP volume: 119.03 ± 15 cm3. The mean volume percentages (%) of the LSP: V5, V10, V20, V30, V40, V50, V55, and V60 were 100%, 99.8%, 99.2%, 94.3%, 84.03%, 59.7%, 0%, 0%, respectively. All patients received doses to the LSP in excess of 50 Gy, one patient received 55 Gy. A statistically significant difference was observed in the median value of V20, V30, V40, V50, D50, P2, P4, P7, P8, P9, and P10 across two different techniques of radiotherapy — VMAT and 3DCRT. None of the patients presented with RILSP. NTCP value was less in VMAT plans compared to 3DCRT, which is also statistically significant.ConclusionRILSP is a rare and often refractory complication of pelvic radiotherapy. Advance radiotherapy technique with proper OAR delineation and constraint can prevent the occurrence of RILSP. VMAT has potential benefits for the probability of dose reduction in LSP. Further studies are required focusing on dose distribution in LSP–OAR and radiotherapy modality.  相似文献   

6.
PurposeRadiation treatment planning inherently involves multiple conflicting planning goals, which makes it a suitable application for multicriteria optimization (MCO). This study investigates a MCO algorithm for VMAT planning (VMAT–MCO) for prostate cancer treatments including pelvic lymph nodes and uses standard inverse VMAT optimization (sVMAT) and Tomotherapy planning as benchmarks.MethodsFor each of ten prostate cancer patients, a two stage plan was generated, consisting of a stage 1 plan delivering 22 Gy to the prostate, and a stage 2 plan delivering 50.4 Gy to the lymph nodes and 56 Gy to the prostate with a simultaneous integrated boost. The single plans were generated by three planning techniques (VMAT–MCO, sVMAT, Tomotherapy) and subsequently compared with respect to plan quality and planning time efficiency.ResultsPlan quality was similar for all techniques, but sVMAT showed slightly better rectum (on average Dmean −7%) and bowel sparing (Dmean −17%) compared to VMAT–MCO in the whole pelvic treatments. Tomotherapy plans exhibited higher bladder dose (Dmean +42%) in stage 1 and lower rectum dose (Dmean −6%) in stage 2 than VMAT–MCO. Compared to manual planning, the planning time with MCO was reduced up to 12 and 38 min for stage 1 and 2 plans, respectively.ConclusionMCO can generate highly conformal prostate VMAT plans with minimal workload in the settings of prostate-only treatments and prostate plus lymph nodes irradiation. In the whole pelvic plan manual VMAT optimization led to slightly improved OAR sparing over VMAT–MCO, whereas for the primary prostate treatment plan quality was equal.  相似文献   

7.

The clinical information on the relationship between the cardiac contact distance (CCD), the maximum dose (Dmax) delivered to the left anterior descending (LAD) coronary artery and the mean heart dose has mostly focused on patients with breast-conserving surgery (BCS), being scarce in postmastectomy patients. The aim of this study is to determine the association between the CCD and the Dmax delivered to the LAD. The secondary objective was to evaluate the dosimetric results of comparing three-dimensional conformal radiotherapy (3D-CRT) to intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques for post mastectomized breast cancer patients with irradiation to the left chest wall. 53 cases of women who received adjuvant standard fractionated postmastectomy radiotherapy (PMRT) were used. Three types of plans were created for each patient: 3D-CRT, seven equidistant IMRT fields, and four partial VMAT arcs. Correlations were evaluated using Pearson’s correlation coefficient. Plans made with IMRT and VMAT showed improved homogeneity and conformity. Associations between CCD and Dmax to LAD were positive for all three plan types. Compared to 3D-CRT, the modulated intensity plans obtained better dose homogeneity and conformity to the target volume. The LAD and heart doses were significantly lower for IMRT and VMAT plans. The CCD can be used as a predictor of the maximum and mean doses of the LAD. Modulated intensity techniques allow for better dose distribution and dose reduction to the heart and LAD.

  相似文献   

8.
BackgroundThis technical note aims to verify the hippocampus and adjacent organs at risk (OARs) sparing ability of an improved beam arrangement, namely hybrid split-arc partial-field volumetric modulated arc therapy (VMAT) (Hsapf-VMAT) during whole brain radiation therapy (WBRT).Materials and methodsComputed tomography simulation images of 22 patients with brain metastases were retrieved in this retrospective planning study. The hippocampus was manually delineated according to the criterion of RTOG 0933. Plans delivering 30 Gy in 10 fractions were generated for each patient using split-arc partial-field VMAT (sapf-VMAT) and Hsapf-VMAT. The sapf-VMAT plans consisted of 4 arc fields of 179.9° each with reduced field size. The Hsapf-VMAT consisted of 4 arc fields similar to sapf-VMAT in addition to 2 lateral opposing static fields. Statistical comparisons between treatment plans of both techniques were performed using the paired t-test at 5% level significance.ResultsThe results demonstrated that Hsapf-VMAT can achieve superior dose sparing in hippocampus which is comparable to sapf-VMAT (p > 0.05). In both eyes, Hsapf-VMAT had significantly lower Dmean and Dmax compared to sapf-VMAT (p < 0.005). Decrease in Dmax of both lenses using Hsapf-VMAT (p < 0.005) were statistically significant when compared to sapf-VMAT. Hsapf-VMAT demonstrated significant reduction of Dmean and Dmedian to the optic nerves (p < 0.05). Whole brain planning target volume (PTV) coverage was not compromised in both techniques.ConclusionThe present study adopts a hybrid technique, namely Hsapf-VMAT, for hippocampal sparing WBRT. Hsapf-VMAT can achieve promising dose reduction to the hippocampus, both eyes and lenses. Therefore, Hsapf-VMAT can be considered an improved version of sapf-VMAT.  相似文献   

9.

Aim

To evaluate the dose distribution to the left anterior descending (LAD) coronary artery in patients treated with postoperative three-dimensional conformal radiotherapy (3DCRT).

Background

Postoperative radiotherapy may increase the risk of heart disease, particularly in patients with left-sided breast cancer. Clinical data on doses to the LAD are limited.

Materials and methods

Retrospective study of 14 patients who underwent postoperative 3DCRT for left breast cancer in 2014. All data were retrieved from medical records. Means, medians, ranges, and percentages were calculated.

Results

The mean dose to the LAD in patients with V25 < 1% was 0.12 cGy. Dmean, Dmax and V25 to the heart were, respectively, 3.7 Gy (range, 0.9–4.18), 40.3 Gy (9.28–62.9), and 1.59 cGy. The mean Dmean and Dmax values in the sample were 9.71 Gy and 33.2 Gy, respectively. The maximum dose to the LAD (D2%) ranged from 3.66 to 53.01 Gy. Due to the spacing of the CT slices (5 mm), it was not possible to completely contour the entire artery. The mean dose to the heart (3.3 Gy) was considered acceptable.

Conclusions

The maximum dose to the LAD was as high as 53 Gy, suggesting an increased risk of cardiac morbidity. This study underscores the value of contouring the LAD and the value of the breath hold technique to reduce maximum cardiac doses. Smaller CT cuts (2.5 mm) can improve contouring. Larger studies with long-term follow up are needed to determine the radiation tolerance dose for the LAD.  相似文献   

10.
BackgroundThe most common secondary cancer is contralateral breast (CLB) cancer after whole breast irradiation (WBI). The aim of this study was to quantify the reduction of CLB dose in tangential intensity modulated radiotherapy (t-IMRT) for WBI using flattening-filter-free (FFF) beams.Materials and methodsWe generated automated planning of 20 young breast cancer patients with limited user interaction. Dose-volume histograms of the planning target volume (PTV), ipsilateral lung, heart, and CLB were calculated. The dose of PTV, the most medial CLB point, and the CLB point below the nipple was measured using an ionization chamber inserted in a slab phantom. We compared the two t-IMRT plans generated by FFF beams and flattening-filter (FF) beams.ResultsAll plans were clinically acceptable. There was no difference in the conformal index, the homogeneity for FFF was significantly worse. For the ipsilateral lung, the maximum dose (Dmax) was significantly higher; however, V20 showed a tendency to be lower in the FFF plan. No differences were found in the Dmax and V30 to the heart of the left breast cancer. FF planning showed significantly lower Dmax and mean dose to the CLB. In contrast to the calculation results, the measured dose of the most medial CLB point and the CLB point below the nipple were significantly lower in FFF mode than in FF mode, with mean reductions of 21.1% and 20%, respectively.ConclusionsT-IMRT planning using FFF reduced the measured out-of-field dose of the most medial CLB point and the CLB point below the nipple.  相似文献   

11.
BackgroundStudy determines differences in calculated dose distributions for non-small cell lung carcinoma (NSC LC) patients. NSC LC cases were investigated, being the most common lung cancer treated by radiotherapy in our clinical practice.Materials and methodsA retrospective study of 15 NSCLC patient dose distributions originally calculated using standard superposition (SS) and recalculated using collapsed cone (CC ) and Monte Carlo (MC) based algorithm expressed as dose to medium in medium (MCDm) and dose to water in medium (MCDw,) was performed so that prescribed dose covers at least 99% of the gross target volume (GTV). Statistical analysis was performed for differences of conformity index (CI), heterogeneity index (HI), gradient index (GI), dose delivered to 2% of the volume (D2%), mean dose (Dmean) and percentage of volumes covered by prescribed dose (V70Gy). For organs at risk (OARs), Dmean and percentage of volume receiving 20 Gy and 5Gy (V20Gy, V5Gy) were analysed.ResultsStatistically significant difference for GTVs was observed between MCDw and SS algorithm in mean dose only. For planning target volumes (PTVs), statistically significant differences were observed in prescribed dose coverage for CC, MCDm and MCDw. The differences in mean CI value for the CC algorithm and mean HI value for MCDm and MCDw were statistically significant. There is a statistically significant difference in the number of MUs for MCDm and MCDw compared to SS.ConclusionAll investigated algorithms succeed in managing the restrictive conditions of the clinical goals. This study shows the drawbacks of the CC algorithm compared to other algorithms used.  相似文献   

12.
BackgroundThe aim of the study was to individualize accelerated partial breast irradiation based on optimal dose distribution, protect risk organ and predict most advantageous technique.Materials and methods138 breast cancer patients receiving postoperative APBI were enrolled. APBI plans were generated using 3D-conformal (3D-CRT), sliding window intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). In the case of superficial tumours, additional plans were developed by adding electron beam. To planning target volume (PTV) 37.5 Gy/10 fractions, 1 fraction/day was prescribed. A novel plan quality index (PQI) served as the basis for comparisons.ResultsIMRT was the most advantageous technique regarding homogeneity. VMAT provided best conformity, 3D-CR T — the lowest lung and heart exposure. PQI was the best in 45 (32.61%) VMAT, 13 (9.42%) IMRT, 9 (6.52%) 3D-CRT plans. In 71 cases (51.45%) no difference was detected. In patients with large PTV, 3D-CRT was the most favourable. Additional electron beam improved PQI of 3D-CRT plans but had no meaningful effect on IMRT or VMAT. IMRT was superior to VMAT if the tumour was superficial (p < 0.001), situated in the medial (p = 0.032) or upper quadrant (p = 0.046).ConclusionsIn half of all cases, individually selected teletherapy techniques provide superior results over others; relevance of a certain technique may be predicted by volume and PTV localization.  相似文献   

13.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

14.
BackgroundThe purpose of the study was to evaluate the toxicity and outcome of nasopharyngeal carcinoma patients treated using 3-dimensional conformal radiotherapy (3DCRT) or volumetric modulated arc therapy (VMAT) technique.Materials and methods68 patients treated between 2006 and 2018 were retrospectively analysed. Since 2009 patients received 3DCRT with 50/70 Gy to the elective/boost volumes in 35 fractions; from then, VMAT with simultaneous integrated boost (SIB) with 54.45/69.96 Gy in 33, or 54/66 Gy in 30 fractions. Induction chemotherapy was administered in 74% of the patients, concomitant cisplatinum in 87%. Acute and late toxicity data, progression-free survival PSF and overall survival OS, and toxicity correlations with dose metrics were reported.ResultsWith a median follow-up of 64 months, complete remission at the last evaluation was in 68% of the patients, while 28% and 9% had locoregional relapse and distant disease, respectively. The 5- and 10-year progression free survival (PFS) rates were 62.7 ± 6.5% and 53.2 ± 8.7%, respectively. The 5- and 10-year OS rates were 78.9 ± 5.5% and 61.4 ± 9.2%, respectively. At the multivariate Cox analysis TNM stage (p = 0.02) and concomitant chemotherapy (p = 0.01) resulted significant for PFS, concomitant chemotherapy (p = 0.04) for OS.Improvements in acute toxicity were presented for VMAT patients due to its ability to spare OARs. Odds ratio (OR) for acute salivary toxicity, between VMAT and 3DCRT, was 4.67 (p = 0.02). Dosimetrically, salivary toxicity correlated with mean parotid dose (p = 0.05), dysphagia with laryngeal (p = 0.04) and mean oral cavity (p = 0.06) doses, when dose-volume histograms (DVHs) are corrected for fractionation.ConclusionThis study is a proof of a significant benefit of the VMAT technique compared with 3DCRT in terms of side effects in nasopharynx patients, and adds dosimetric correlations.  相似文献   

15.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

16.
ObjectivesTo investigate the dosimetric effect of air gaps under bolus on skin dose for left-sided post-mastectomy radiotherapy with loco regional involvement.MethodsEight patients were planned retrospectively with volume modulated arc therapy (VMAT) and conventional static Field-in-Field (FinF) methods. Three different setups were applied for the 5-mm bolus over the chest wall having 0, 5 or 10 mm air gap under the bolus. The dose calculation was performed using Monte Carlo (MC) simulation. In addition, Analytic Anisotropic Algorithm (AAA) was used to demonstrate the differences observed in clinical setting.ResultsThe investigated air gaps under the bolus had minimal effect on surface dose for FinF plans (relative difference ≤ 2.6%), whereas for VMAT plans the surface dose decreased 13.6% when compared to the case with no air gap. In both FinF and VMAT, the largest differences between AAA and MC were seen at the surface where AAA underestimated the dose by 1.5 Gy (p < 0.05) on average; while the dose in the target volume excluding the surface was relatively similar being on average 0.3 Gy (p > 0.05) larger with AAA than with MC calculations.ConclusionsThe surface dose was significantly lower with VMAT technique than with FinF technique. Possible air gaps under the bolus reduced the surface dose significantly further for VMAT but not for FinF treatments, which may have clinical impact on recurrence rate. AAA was shown to underestimate the surface dose when compared to MC calculation.  相似文献   

17.
PurposeTo investigate different volumetric modulated arc therapy (VMAT) field designs for lymph node positive breast cancer patients when compared to conventional static fields and standard VMAT designs.MethodsNineteen breast cancer patients with lymph node involvement (eleven left and eight right sided) were retrospectively analyzed with different arc designs. Proposed split arc designs with total rotations of 2 × 190° and 2 × 240° were compared to conventional field in field (FinF) and previously published non-split arc techniques with the same amount of total rotations.ResultsAll VMAT plans were superior in dose conformity, when compared to the FinF plans. Split arc design decreased significantly ipsilateral lung dose and heart V5Gy for both left and right sided cases, when compared to non-split VMAT designs. For left sided cases no significant differences were seen in contralateral lung mean dose or V5Gy between different VMAT designs. For right sided cases the contralateral lung dose V5Gy was significantly higher in split VMAT group, when compared to non-split VMAT designs. The contralateral breast dose V5Gy increased significantly for split VMAT plans for both sides, when compared to non-split VMAT designs or FinF plans.ConclusionsThe proposed split VMAT technique was shown to be superior to previously published non-split VMAT and conventional FinF techniques significantly reducing dose to the ipsilateral lung and heart. However, this came with the expense of an increase in the dose to the contralateral breast and for right-sided cases to the contralateral lung.  相似文献   

18.
Background and purposeTomoDirect (TD) can only operate in free-breathing. The purpose of this study is to compare TD with breath-hold 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) techniques for left breast treatments, and to determine if the lack of respiratory gating is a handicap for cardiac sparing.Materials and methods15 patients treated for left breast had two computed tomography simulation, in free breathing (FB) and in deep-inspiration breath-hold (DIBH). Four treatments were planned: TD-FB, 3DCRT-FB, 3DCRT-DIBH and IMRT-DIBH. Dose to PTV, heart, lungs, right breast and patient were compared.ResultsA slightly lower cardiac mean dose is found for 3DCRT-DIBH than for TD-FB group (1.99 Gy Vs 2.89 Gy, p = 0.0462), while no statistical difference is found for heart V20. TD-FB plans show the best PTV dose homogeneity (0.053, p < 0.001) and the lowest left lung mean dose (5.16 Gy, p < 0.001). No major differences are found for the other organs.ConclusionsTomoDirect and breath-hold 3DCRT are complementary techniques for left breast treatments: for a minority of patients, respiratory gating is mandatory to lower cardiac dose; for the remaining majority of patients, TomoDirect achieves better PTV homogeneity and reduced left lung dose, with cardiac dose equivalent to 3DCRT-DIBH.  相似文献   

19.

Purpose

To retrospectively evaluate the cardiac exposure in three cohorts of lung cancer patients treated with dynamic conformal arc therapy (DCAT), intensity-modulated radiotherapy (IMRT), or volumetric modulated arc therapy (VMAT) at our institution in the past seven years.

Methods and Materials

A total of 140 lung cancer patients were included in this institutional review board approved study: 25 treated with DCAT, 70 with IMRT and 45 with VMAT. All plans were generated in a same commercial treatment planning system and have been clinically accepted and delivered. The dose distribution to the heart and the effects of tumor laterality, the irradiated heart volume and the beam-to-heart distance on the cardiac exposure were investigated.

Results

The mean dose to the heart among all 140 plans was 4.5 Gy. Specifically, the heart received on average 2.3, 5.2 and 4.6 Gy in the DCAT, IMRT and VMAT plans, respectively. The mean heart doses for the left and right lung tumors were 4.1 and 4.8 Gy, respectively. No patients died with evidence of cardiac disease. Three patients (2%) with preexisting cardiac condition developed cardiac disease after treatment. Furthermore, the cardiac exposure was found to increase linearly with the irradiated heart volume while decreasing exponentially with the beam-to-heart distance.

Conclusions

Compared to old technologies for lung cancer treatment, modern radiotherapy treatment modalities demonstrated better heart sparing. But the heart dose in lung cancer radiotherapy is still higher than that in the radiotherapy of breast cancer and Hodgkin’s disease where cardiac complications have been extensively studied. With strong correlations of mean heart dose with beam-to-heart distance and irradiated heart volume, cautions should be exercised to avoid long-term cardiac toxicity in the lung cancer patients undergoing radiotherapy.  相似文献   

20.
PurposeTo compare normal tissue complication probability (NTCP) and average doses in the bone marrow (BM), obtained for five different radiotherapy delivery and planning strategies of cervical and endometrial cancer.Material/methods50 patients were taken to analysis. For each case, 3 different dose delivery techniques were used: 4-field, X15MV, 3DCRT; 7-field, X6MV, IMRT; and 2-arc, X6MV, VMAT. Two optimization scenarios were used for the IMRT and VMAT plans generation: with (+) and without (−) the inclusion of the BM as an optimized structure. Average doses and dose-volume histogram parameters for the PTV, BM, bladder, rectum, bowels and femoral heads were compared. In addition, the BM doses were analyzed with respect to the PTV and/or volume of the BM, and NTCP for the BM were computed.ResultsThe dose in PTV for evaluated plans was similar. The worst doses in organs at risk were obtained for 3DCRT. Using the BM during the optimization of IMRT and VMAT reduces an average dose in BM without increasing the doses in the bladder, rectum and bowels. Differences between doses in BM for IMRT(+) and VMAT(+) plans were similar while NTCP was lower for VMAT(+). A correlation between average dose in BM and the volume ratio of BM and PTV was found for each technique.ConclusionUsing the BM during the optimization of the IMRT and VMAT plans effectively reduces the dose in BM without increasing the dose in the bladder, rectum and bowels. The VMAT(+) plans were characterized by the lowest NTCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号