首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general.  相似文献   

2.
The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine–alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine–glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.  相似文献   

3.
Epstein-Barr virus (EBV) is tightly associated with certain human cancers, but there is as yet no specific treatment against EBV-related diseases. The EBV-encoded EBNA1 protein is essential to maintain viral episomes and for viral persistence. As such, EBNA1 is expressed in all EBV-infected cells, and is highly antigenic. All infected individuals, including individuals with cancer, have CD8+ T cells directed towards EBNA1 epitopes, yet the immune system fails to detect and destroy cells harboring the virus. EBV immune evasion depends on the capacity of the Gly-Ala repeat (GAr) domain of EBNA1 to inhibit the translation of its own mRNA in cis, thereby limiting the production of EBNA1-derived antigenic peptides presented by the major histocompatibility complex (MHC) class I pathway. Here we establish a yeast-based assay for monitoring GAr-dependent inhibition of translation. Using this assay we identify doxorubicin (DXR) as a compound that specifically interferes with the GAr effect on translation in yeast. DXR targets the topoisomerase-II–DNA complexes and thereby causes genomic damage. We show, however, that the genotoxic effect of DXR and various analogs thereof is uncoupled from the effect on GAr-mediated translation control. This is further supported by the observation that etoposide and teniposide, representing another class of topoisomerase-II–DNA targeting drugs, have no effect on GAr-mediated translation control. DXR and active analogs stimulate, in a GAr-dependent manner, EBNA1 expression in mammalian cells and overcome GAr-dependent restriction of MHC class I antigen presentation. These results validate our approach as an effective high-throughput screening assay to identify drugs that interfere with EBV immune evasion and, thus, constitute candidates for treating EBV-related diseases, in particular EBV-associated cancers.KEY WORDS: EBV-associated cancers, Cell-based drug screening, EBNA1 GAr domain, Yeast-based models, Immune evasion, Doxorubicin, Daunorubicin, 5-fluorouracil  相似文献   

4.
The glycine-alanine repeat (GAr) sequence of the Epstein-Barr virus-encoded EBNA-1 prevents presentation of antigenic peptides to major histocompatibility complex class I molecules. This has been attributed to its capacity to suppress mRNA translation in cis. However, the underlying mechanism of this function remains largely unknown. Here, we have further investigated the effect of the GAr as a regulator of mRNA translation. Introduction of silent mutations in each codon of a 30-amino-acid GAr sequence does not significantly affect the translation-inhibitory capacity, whereas minimal alterations in the amino acid composition have strong effects, which underscores the observation that the amino acid sequence and not the mRNA sequence mediates GAr-dependent translation suppression. The capacity of the GAr to repress translation is dose and position dependent and leads to a relative accumulation of preinitiation complexes on the mRNA. Taken together with the surprising observation that fusion of the 5′ untranslated region (UTR) of the c-myc mRNA to the 5′ UTR of GAr-carrying mRNAs specifically inactivates the effect of the GAr, these results indicate that the GAr targets components of the translation initiation process. We propose a model in which the nascent GAr peptide delays the assembly of the initiation complex on its own mRNA.Epstein-Barr Virus (EBV) nuclear antigen 1 (EBNA-1) and latency-associated nuclear antigen 1 (LANA-1), from Kaposi''s sarcoma-associated herpesvirus (KSHV), are major latency proteins of these two gammaherpesviruses that are essential for maintaining viral episomes in infected cells (21, 22). Independent studies suggest that both proteins have evolved mechanisms to remain largely invisible to the immune system, which could otherwise eliminate latently infected cells (8, 9, 19, 25). These mechanisms act in cis and are mediated via an internal repeat region. In the case of EBNA-1 this region consists of an N-terminal glycine-alanine repeat (GAr), and for LANA-1 the region consists of a glutamine-glutamate-aspartate central repeat (QED-CR). Although the two domains do not share amino acid homology, both retard their own synthesis to reduce the production of defective ribosomal products that can be processed for the major histocompatibility complex (MHC) class I-restricted antigen presentation pathway (23, 24), highlighting the importance of translation control in regulating MHC class I-restricted antigen presentation. To compensate for their low rates of synthesis, both proteins also have slow turnover rates (4, 8).Regulation of translation for most prokaryotic and eukaryotic mRNAs occurs at the level of initiation, but there are examples where regulation of protein synthesis depends on the elongation stage (17). The two main types of translation initiation are the classic cap-dependent and the less frequent cap-independent translation mechanisms (5, 7, 11, 14, 16). In the former, the preinitiation complex is formed around the cap structure in the 5′ untranslated region (UTR) of the message, whereas in the latter the 40S subunit is directed toward the mRNA via an internal ribosome entry site (IRES). The mechanism of GAr- and LANA-1-mediated control of translation seems different from other types of viral regulation in several aspects. The EBNA-1 GAr is 60 to 300 amino acids long, depending on virus isolate, and is positioned in the N-terminal part of the protein. The GAr message is GC rich but does not activate protein kinase R and eukaryotic initiation factor 2α phosphorylation (25). The fact that the GAr has to be encoded to suppress translation, coupled with the restricted use of GGG and GGA codons to express Gly and of GCA to express Ala in the GAr (GAT, GAG, and CAG for aspartic acid, glutamic acid, and glutamine, respectively, in the LANA sequence), could suggest that codon exhaustion might explain the effect of these repeats. However, manipulations of sequence order, orientation, and composition of the QED-CR and GAr domains and the observation that antibodies directed toward the GAr can stimulate translation in vitro instead favor a direct role for the amino acid sequence (8, 25).Here, we have studied GAr-mediated regulation of translation in vitro and in vivo. The results presented suggest that, once synthesized, the nascent GAr peptide sequence prevents the assembly of the following upstream ribosomes. This knowledge should further understanding of how amino acid repeat sequences can affect mRNA translation in cis and should shed light on a novel type of viral control of mRNA translation and its implications in regulating MHC class I-restricted antigen presentation.  相似文献   

5.
Unique purine-rich mRNA sequences embedded in the coding sequences of a distinct group of gammaherpesvirus maintenance proteins underlie the ability of the latently infected cell to minimize immune recognition. The Epstein-Barr virus nuclear antigen, EBNA1, a well characterized lymphocryptovirus maintenance protein has been shown to inhibit in cis antigen presentation, due in part to a large internal repeat domain encoding glycine and alanine residues (GAr) encoded by a purine-rich mRNA sequence. Recent studies have suggested that it is the purine-rich mRNA sequence of this repeat region rather than the encoded GAr polypeptide that directly inhibits EBNA1 self-synthesis and contributes to immune evasion. To test this hypothesis, we generated a series of EBNA1 internal repeat frameshift constructs and assessed their effects on cis-translation and endogenous antigen presentation. Diverse peptide sequences resulting from alternative repeat reading frames did not alleviate the translational inhibition characteristic of EBNA1 self-synthesis or the ensuing reduced surface presentation of EBNA1-specific peptide-MHC class I complexes. Human cells expressing the EBNA1 frameshift variants were also poorly recognized by antigen-specific T-cells. Furthermore, a comparative analysis of the mRNA sequences of the corresponding repeat regions of different viral maintenance homologues highlights the high degree of identity between the nucleotide sequences despite very little homology in the encoded amino acid sequences. Based on these combined observations, we propose that the cis-translational inhibitory effect of the EBNA1 internal repeat sequence operates mechanistically at the nucleotide level, potentially through RNA secondary structural elements, and is unlikely to be mediated through the GAr polypeptide. The demonstration that the EBNA1 repeat mRNA sequence and not the encoded protein sequence underlies immune evasion in this class of virus suggests a novel approach to therapeutic development through the use of anti-sense strategies or small molecules targeting EBNA1 mRNA structure.  相似文献   

6.
Partial degradation or regulated ubiquitin proteasome-dependent processing by the 26 S proteasome has been demonstrated, but the underlying molecular mechanisms and the prevalence of this phenomenon remain obscure. Here we show that the Gly-Ala repeat (GAr) sequence of EBNA1 affects processing of substrates via the ubiquitin-dependent degradation pathway in a substrate- and position-specific fashion. GAr-mediated increase in stability of proteins targeted for degradation via the 26 S proteasome was associated with a fraction of the substrates being partially processed and the release of the free GAr. The GAr did not cause a problem for the proteolytic activity of the proteasome, and its fusion to the N terminus of p53 resulted in an increase in the rate of degradation of the entire chimera. Interestingly the GAr had little effect on the stability of EBNA1 protein itself, and targeting EBNA1 for 26 S proteasome-dependent degradation led to its complete degradation. Taken together, our data suggest a model in which the GAr prevents degradation or promotes endoproteolytic processing of substrates targeted for the 26 S proteasome by interfering with the initiation step of substrate unfolding. These results will help to further understand the underlying mechanisms for partial proteasome-dependent degradation.  相似文献   

7.
The adaptation of protein synthesis to environmental and physiological challenges is essential for cell viability. Here, we show that translation is tightly linked to the protein‐folding environment of the cell through the functional properties of the ribosome bound chaperone NAC (nascent polypeptide‐associated complex). Under non‐stress conditions, NAC associates with ribosomes to promote translation and protein folding. When proteostasis is imbalanced, NAC relocalizes from a ribosome‐associated state to protein aggregates in its role as a chaperone. This results in a functional depletion of NAC from the ribosome that diminishes translational capacity and the flux of nascent proteins. Depletion of NAC from polysomes and re‐localisation to protein aggregates is observed during ageing, in response to heat shock and upon expression of the highly aggregation‐prone polyglutamine‐expansion proteins and Aβ‐peptide. These results demonstrate that NAC has a central role as a proteostasis sensor to provide the cell with a regulatory feedback mechanism in which translational activity is also controlled by the folding state of the cellular proteome and the cellular response to stress.  相似文献   

8.
Mammalian mitochondria have their own dedicated protein synthesis system, which produces 13 essential subunits of the oxidative phosphorylation complexes. We have reconstituted an in vitro translation system from mammalian mitochondria, utilizing purified recombinant mitochondrial translation factors, 55S ribosomes from pig liver mitochondria, and a tRNA mixture from either Escherichia coli or yeast. The system is capable of translating leaderless mRNAs encoding model proteins (DHFR and nanoLuciferase) or some mtDNA-encoded proteins. We show that a leaderless mRNA, encoding nanoLuciferase, is faithfully initiated without the need for any auxiliary factors other than IF-2mt and IF-3mt. We found that the ribosome-dependent GTPase activities of both the translocase EF-G1mt and the recycling factor EF-G2mt are insensitive to fusidic acid (FA), the translation inhibitor that targets bacterial EF-G homologs, and consequently the system is resistant to FA. Moreover, we demonstrate that a polyproline sequence in the protein causes 55S mitochondrial ribosome stalling, yielding ribosome nascent chain complexes. Analyses of the effects of the Mg concentration on the polyproline-mediated ribosome stalling suggested the unique regulation of peptide elongation by the mitoribosome. This system will be useful for analyzing the mechanism of translation initiation, and the interactions between the nascent peptide chain and the mitochondrial ribosome.  相似文献   

9.
Our previous study indicated that specificity protein-1 (Sp1) is accumulated during hypoxia in an internal ribosomal entry site (IRES)-dependent manner. Herein, we found that the Sp1 was induced strongly at the protein level, but not in the mRNA level, in lung tumor tissue, indicating that translational regulation might contribute to the Sp1 accumulation during tumorigenesis. A further study showed that the translation of Sp1 was dramatically induced through an IRES-dependent pathway. RNA immunoprecipitation analysis of proteins bound to the 5′-untranslated region (5′-UTR) of Sp1 identified interacting protein — nucleolin. Knockdown of nucleolin significantly inhibited IRES-mediated translation of Sp1, suggesting that nucleolin positively facilitates Sp1 IRES activation. Further analysis of the interaction between nucleolin and the 5′-UTR of Sp1 mRNA revealed that the GAR domain was important for IRES-mediated translation of Sp1. Moreover, gefitinib, and LY294002 and MK2206 compounds inhibited IRES-mediated Sp1 translation, implying that activation of the epithelial growth factor receptor (EGFR) pathway via Akt activation triggers the IRES pathway. In conclusion, EGFR activation-mediated nucleolin phosphorylated at Thr641 and Thr707 was recruited to the 5′-UTR of Sp1 as an IRES trans-acting factor to modulate Sp1 translation during lung cancer formation.  相似文献   

10.
11.
bicaudal was the first Drosophila mutation identified as producing mirror-image pattern duplications along the anteroposterior axis of the embryo. However the mutation has been little studied due to its low penetrance and suppressibility. We undertook cloning of the bicaudal locus together with studies of the mutation's effects on key elements of the posterior embryonic patterning pathway. Our mapping studies place the bicaudal mutation within a approximately 2 kb region, 3' to the protein coding sequence of the Drosophila homolog of beta NAC, a subunit of Nascent polypeptide Associated Complex (NAC). Genomic DNA encoding beta NAC completely rescues the bicaudal phenotype. The lethal phenotype of Enhancer of Bicaudal, E(Bic), a mutation hypothesized to affect the bicaudal locus, is also completely rescued by the beta NAC locus. We further demonstrate that the E(Bic) mutation is caused by a P element insertion into the transcribed region of the beta NAC gene. NAC is among the first ribosome-associated entities to bind the nascent polypeptide after peptide bond formation. In contrast to other bicaudal-embryo-producing mutations, bicaudal leads to ectopic translation of mRNA for the posterior determinant nanos, without affecting the localization of mRNA for its upstream regulator, oskar, in the embryo. These findings suggest that repression of nanos mRNA translation occurs on the ribosome and involves a role for beta NAC.  相似文献   

12.
Freire MA 《Gene》2005,345(2):271-277
A two-hybrid screen with the translation initiation factor, eIF(iso)4E from Arabidopsis, identified a clone encoding a lipoxygenase type 2 [Freire, M.A., et al., 2000. Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Molecular Biology 44, 129-140], and three cDNA clones encoding the homologue of the mammalian BTF3 factor, the beta subunit of the nascent polypeptide-associated complex (NAC). Here we report on the interaction between the translation initiation factor eIF(iso)4E and AtBTF3. AtBTF3 protein is able to interact with the wheat initiation factors eIF4E and eIF(iso)4E. AtBTF3 contains a sequence related to the prototypic motif found on most of the 4E-binding proteins, and competes with the translation initiation factor eIF(iso)4G for eIF4(iso)4E binding, in a two hybrid interference assay. These findings provide a molecular link between the translation initiation mechanism and the emergence of the nascent polypeptide chains.  相似文献   

13.
Cytoplasmic stress granules (SGs) are specialized regulatory sites of mRNA translation that form under different stress conditions known to inhibit translation initiation. The formation of SG occurs via two pathways; the eukaryotic initiation factor (eIF) 2α phosphorylation-dependent pathway mediated by stress and the eIF2α phosphorylation-independent pathway mediated by inactivation of the translation initiation factors eIF4A and eIF4G. In this study, we investigated the effects of targeting different translation initiation factors and steps in SG formation in HeLa cells. By depleting eIF2α, we demonstrate that reduced levels of the eIF2.GTP.Met-tRNAiMet ternary translation initiation complexes is sufficient to induce SGs. Likewise, reduced levels of eIF4B, eIF4H, or polyA-binding protein, also trigger SG formation. In contrast, depletion of the cap-binding protein eIF4E or preventing its assembly into eIF4F results in modest SG formation. Intriguingly, interfering with the last step of translation initiation by blocking the recruitment of 60S ribosome either with 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamideis or through depletion of the large ribosomal subunits protein L28 does not induce SG assembly. Our study identifies translation initiation steps and factors involved in SG formation as well as those that can be targeted without induction of SGs.  相似文献   

14.
The tumour suppressor protein p53 and the Epstein-Barr-virus-encoded Epstein-Barr virus nuclear antigen-1 (EBNA1) can regulate their own proteasomal degradation and mRNA translation - in effect, they mediate control of their own steady-state levels. A large fraction of mRNA-translation-initiation events does not give rise to functional proteins; so could this reflect a more widespread concept by which certain proteins that require tight control of expression use similar means of self-regulation?  相似文献   

15.
16.
During heat shock of chicken reticulocytes the synthesis of a single heat shock protein, HSP70, increases greater than 10-fold, while the level of HSP70 mRNA increases less than 2-fold during the same period. Comparison of the in vivo levels of HSP70 and beta-globin synthesis with their mRNA abundance reveals that the translation of HSP70 mRNA is repressed in normal reticulocytes and is activated upon heat shock. In its translationally repressed state HSP70 mRNA is functionally associated with polysomes based on sedimentation analysis of polysomes from untreated or puromycin-treated cells and by analysis of in vitro "run-off" translation products using isolated polysomes. Treatment of control and heat shocked cells with the initiation inhibitor pactamycin reveals that elongation of the HSP70 nascent peptide is not completely arrested, but is slower in control cells. Furthermore, the inefficient translation of HSP70 mRNA in vivo is not due to the lack of an essential translation factor; HSP70 mRNA is efficiently translated in chicken reticulocyte translation extracts as well as in heterologous rabbit reticulocyte extracts. Our results reveal that a major control point for HSP70 synthesis in reticulocytes is the elongation rate of the HSP70 nascent peptide.  相似文献   

17.
The ribosome-associated nascent polypeptide-associated complex (NAC) is involved in multiple cotranslational processes, including protein transport into the ER and mitochondria, and also acts as a chaperone to assist protein folding. Here we demonstrated that NAC is also essential for autophagic degradation of a variety of protein aggregates in C. elegans. Loss of function of NAC impairs lysosome function, resulting in accumulation of autophagic substrates in enlarged autolysosomes. Knockdown of mammalian NAC also causes accumulation of nondegradative autolysosomes. Our study revealed that NAC plays an evolutionarily conserved role in the autophagy pathway and thus in maintaining protein homeostasis under physiological conditions.  相似文献   

18.
Poliovirus unlinks TIA1 aggregation and mRNA stress granule formation   总被引:1,自引:0,他引:1  
White JP  Lloyd RE 《Journal of virology》2011,85(23):12442-12454
In response to environmental stress and viral infection, mammalian cells form foci containing translationally silenced mRNPs termed stress granules (SGs). As aggregates of stalled initiation complexes, SGs are defined by the presence of translation initiation machinery in addition to mRNA binding proteins. Here, we report that cells infected with poliovirus (PV) can form SGs early that contain T-cell-restricted intracellular antigen 1 (TIA1), translation initiation factors, RNA binding proteins, and mRNA. However, this response is blocked as infection progresses, and a type of pseudo-stress granule remains at late times postinfection and contains TIA but lacks translation initiation factors, mRNA binding proteins, and most polyadenylated mRNA. This result was observed using multiple stressors, including viral infection, oxidative stress, heat shock, and endoplasmic reticulum stress. Multiple proteins required for efficient viral internal ribosome entry site-dependent translation are localized to SGs under stress conditions, providing a potential rationale for the evolution and maintenance of the SG inhibition phenotype. Further, the expression of a noncleavable form of the RasGAP-SH3 domain binding protein in PV-infected cells enables SGs whose constituents are consistent with the presence of stalled 48S translation preinitiation complexes to persist throughout infection. These results indicate that in poliovirus-infected cells, the functions of TIA self-aggregation and aggregation of stalled translation initiation complexes into stress granules are severed, leading to novel foci that contain TIA1 but lack other stress granule-defining components.  相似文献   

19.
The specialized protein synthesis functions of the cytosol and endoplasmic reticulum compartments are conferred by the signal recognition particle (SRP) pathway, which directs the cotranslational trafficking of signal sequence-encoding mRNAs from the cytosol to the endoplasmic reticulum (ER). Although subcellular mRNA distributions largely mirror the binary pattern predicted by the SRP pathway model, studies in mammalian cells, yeast, and Drosophila have also demonstrated that cytosolic protein-encoding mRNAs are broadly represented on ER-bound ribosomes. A mechanism for such noncanonical mRNA localization remains, however, to be identified. Here, we examine the hypothesis that de novo translation initiation on ER-bound ribosomes serves as a mechanism for localizing cytosolic protein-encoding mRNAs to the ER. As a test of this hypothesis, we performed single molecule RNA fluorescence in situ hybridization studies of subcellular mRNA distributions and report that a substantial fraction of mRNAs encoding the cytosolic protein GAPDH resides in close proximity to the ER. Consistent with these data, analyses of subcellular mRNA and ribosome distributions in multiple cell lines demonstrated that cytosolic protein mRNA-ribosome distributions were strongly correlated, whereas signal sequence-encoding mRNA-ribosome distributions were divergent. Ribosome footprinting studies of ER-bound polysomes revealed a substantial initiation codon read density enrichment for cytosolic protein-encoding mRNAs. We also demonstrate that eukaryotic initiation factor 2α is bound to the ER via a salt-sensitive, ribosome-independent mechanism. Combined, these data support ER-localized translation initiation as a mechanism for mRNA recruitment to the ER.  相似文献   

20.
Expression of therapeutically important proteins has benefited dramatically from the advent of chemically modified mRNAs that feature decreased lability and immunogenicity. This had a momentous effect on the rapid development of COVID-19 mRNA vaccines. Incorporation of the naturally occurring pseudouridine (Ψ) or N1-methyl-pseudouridine (N1mΨ) into in vitro transcribed mRNAs prevents the activation of unwanted immune responses by blocking eIF2α phosphorylation, which inhibits translation. Here, we report that Ψs in luciferase (Luc) mRNA exacerbate translation pausing in nuclease-untreated rabbit reticulocyte lysate (uRRL) and promote the formation of high-order-ribosome structures. The major deceleration of elongation occurs at the Ψ-rich nucleotides 1294–1326 of Ψ-Luc mRNA and results in premature termination of translation. The impairment of translation is mainly due to the shortage of membranous components. Supplementing uRRL with canine microsomal membranes (CMMs) relaxes the impediments to ribosome movement, resolves collided ribosomes, and greatly enhances full-size luciferase production. CMMs also strongly stimulated an extremely inefficient translation of N1mΨ-Luc mRNA in uRRL. Evidence is presented that translational pausing can promote membrane recruitment of polysomes with nascent polypeptides that lack a signal sequence. Our results highlight an underappreciated role of membrane binding to polysomes in the prevention of ribosome collision and premature release of nascent polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号