首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding how environmental and climate change can alter habitat overlap of marine predators has great value for the management and conservation of marine ecosystems. Here, we estimated spatiotemporal changes in habitat suitability and inter‐specific overlap among three marine predators: Baltic gray seals (Halichoerus grypus), harbor seals (Phoca vitulina), and harbor porpoises (Phocoena phocoena) under contemporary and future conditions. Location data (>200 tagged individuals) were collected in the southwestern region of the Baltic Sea; one of the fastest‐warming semi‐enclosed seas in the world. We used the maximum entropy (MaxEnt) algorithm to estimate changes in total area size and overlap of species‐specific habitat suitability between 1997–2020 and 2091–2100. Predictor variables included environmental and climate‐sensitive oceanographic conditions in the area. Sea‐level rise, sea surface temperature, and salinity data were taken from representative concentration pathways [RCPs] scenarios 6.0 and 8.5 to forecast potential climate change effects. Model output suggested that habitat suitability of Baltic gray seals will decline over space and time, driven by changes in sea surface salinity and a loss of currently available haulout sites following sea‐level rise in the future. A similar, although weaker, effect was observed for harbor seals, while suitability of habitat for harbor porpoises was predicted to increase slightly over space and time. Inter‐specific overlap in highly suitable habitats was also predicted to increase slightly under RCP scenario 6.0 when compared to contemporary conditions, but to disappear under RCP scenario 8.5. Our study suggests that marine predators in the southwestern Baltic Sea may respond differently to future climatic conditions, leading to divergent shifts in habitat suitability that are likely to decrease inter‐specific overlap over time and space. We conclude that climate change can lead to a marked redistribution of area use by marine predators in the region, which may influence local food‐web dynamics and ecosystem functioning.  相似文献   

2.
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009–2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152–302 m), precipitation of the warmest quarter, i.e., April–June (668–1014 mm), precipitation of the driest month (4–7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two‐thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long‐term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.  相似文献   

3.
Climate change influences species geographical distribution and diversity pattern. The Chinese fire‐bellied newt (Cynops orientalis) is an endemic species distributed in East‐central China, which has been classified as near‐threatened species recently due to habitat destruction and degradation and illegal trade in the domestic and international pet markets. So far, little is known about the spatial distribution of the species. Based on bioclimatic data of the current and future climate projections, we modeled the change in suitable habitat for C. orientalis by ten algorithms, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. In this study, 46 records of C. orientalis from East China and 8 bioclimatic variables were used. Among the ten modeling algorithms, four (GAM, GBM, Maxent, and RF) were selected according to their predictive abilities. The current habitat suitability showed that C. orientalis had a relatively wide but fragmented distribution, and it encompassed 41,862 km2. The models suggested that precipitation of warmest quarter (bio18) and mean temperature of wettest quarter (bio6) had the highest contribution to the model. This study revealed that C. orientalis is sensitive to climate change, which will lead to a large range shift. The projected spatial and temporal pattern of range shifts for C. orientalis should provide a useful reference for implementing long‐term conservation and management strategies for amphibians in East China.  相似文献   

4.
Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non‐native lizard (Podarcis muralis), we aimed to demonstrate how multi‐scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence‐background models to predict areas of climate suitability at a national‐scale (5 km resolution), and fine‐scale habitat suitability at the local scale (2 m resolution). We then integrated local models into an individual‐based modeling platform to simulate population dynamics and forecast range expansion for 10 populations in heterogeneous landscapes. National‐scale models indicated climate suitability has restricted the species to the southern parts of the UK, primarily by a latitudinal cline in overwintering conditions. Patterns of population growth and range expansion were related to differences in local landscape configuration and heterogeneity. Growth curves suggest populations could be in the early stages of exponential growth. However, annual rates of range expansion are predicted to be low (5–16 m). We conclude that extensive nationwide range expansion through secondary introduction is likely to be restricted by currently unsuitable climate beyond southern regions of the UK. However, exponential growth of local populations in habitats providing transport pathways is likely to increase opportunities for regional expansion. The broad habitat niche of P. muralis, coupled with configuration of habitat patches in the landscape, allows populations to increase locally with minimal dispersal.  相似文献   

5.
We present a novel platform for testing the effects of interventions on the life‐ and healthspan of a short‐lived freshwater organism with complex behavior and physiology—the planktonic crustacean Daphnia magna. Within this platform, dozens of complex behavioral features of both routine motion and response to stimuli are continuously quantified over large synchronized cohorts via an automated phenotyping pipeline. We build predictive machine‐learning models calibrated using chronological age and extrapolate onto phenotypic age. We further apply the model to estimate the phenotypic age under pharmacological perturbation. Our platform provides a scalable framework for drug screening and characterization in both life‐long and instant assays as illustrated using a long‐term dose‐response profile of metformin and a short‐term assay of well‐studied substances such as caffeine and alcohol.  相似文献   

6.
Environmental conditions experienced during early life may have long‐lasting effects on later‐life phenotypes and fitness. Individuals experiencing poor early‐life conditions may suffer subsequent fitness constraints. Alternatively, individuals may use a strategic “Predictive Adaptive Response” (PAR), whereby they respond—in terms of physiology or life‐history strategy—to the conditions experienced in early life to maximize later‐life fitness. Particularly, the Future Lifespan Expectation (FLE) PAR hypothesis predicts that when poor early‐life conditions negatively impact an individual''s physiological state, it will accelerate its reproductive schedule to maximize fitness during its shorter predicted life span. We aimed to measure the impact of early‐life conditions and resulting fitness across individual lifetimes to test predictions of the FLE hypothesis in a wild, long‐lived model species. Using a long‐term individual‐based dataset, we investigated how early‐life conditions are linked with subsequent fitness in an isolated population of the Seychelles warbler Acrocephalus sechellensis. How individuals experience early‐life environmental conditions may vary greatly, so we also tested whether telomere length—shorter telomers are a biomarker of an individual''s exposure to stress—can provide an effective measure of the individual‐specific impact of early‐life conditions. Specifically, under the FLE hypothesis, we would expect shorter telomeres to be associated with accelerated reproduction. Contrary to expectations, shorter juvenile telomere length was not associated with poor early‐life conditions, but instead with better conditions, probably as a result of faster juvenile growth. Furthermore, neither juvenile telomere length, nor other measures of early‐life conditions, were associated with age of first reproduction or the number of offspring produced during early life in either sex. We found no support for the FLE hypothesis. However, for males, poor early‐life body condition was associated with lower first‐year survival and reduced longevity, indicating that poor early‐life conditions pose subsequent fitness constraints. Our results also showed that using juvenile telomere length as a measure of early‐life conditions requires caution, as it is likely to not only reflect environmental stress but also other processes such as growth.  相似文献   

7.
This study of Astragalus holmgreniorum examines its adaptations to the warm desert environment and whether these adaptations will enable it to persist. Its spring ephemeral hemicryptophyte life‐history strategy is unusual in warm deserts. We used data from a 22‐year demographic study supplemented with reproductive output, seed bank, and germinant survival studies to examine the population dynamics of this species using discrete‐time stochastic matrix modeling. The model showed that A. holmgreniorum is likely to persist in the warm desert in spite of high dormant‐season mortality. It relies on a stochastically varying environment with high inter‐annual variation in precipitation for persistence, but without a long‐lived seed bank, environmental stochasticity confers no advantage. Episodic high reproductive output and frequent seedling recruitment along with a persistent seed bank are adaptations that facilitate its survival. These adaptations place its life‐history strategy further along the spectrum from “slower” to “faster” relative to other perennial spring ephemerals. The extinction risk for small populations is relatively high even though mean λ s > 1 because of the high variance in year quality. This risk is also strongly dependent on seed bank starting values, creating a moving window of extinction risk that varies with population size through time. Astragalus holmgreniorum life‐history strategy combines the perennial spring ephemeral life form with features more characteristic of desert annuals. These adaptations permit persistence in the warm desert environment. A promising conclusion is that new populations of this endangered species can likely be established through direct seeding.  相似文献   

8.
We studied life‐history traits focusing on the growth and condition of the pikeperch Sander lucioperca to evaluate its phenotypic plasticity when introduced to new environments. Pikeperch is a non‐native fish introduced to Iberian freshwater fauna in 1998 that quickly spread to other river basins through human‐mediated activities, occupying now a wide variety of habitats along mainland Portugal. Condition (K and SMI), fork length at age, and length–weight relationships were studied for Portuguese populations. Pikeperch fork length for ages 1, 2, 3, and 4 was different between several populations. We applied generalized linear models (GLM) to study the influence of habitat type, latitude, altitude, time after first detection, and fish prey richness on pikeperch populations size at age 4 and condition. We observed higher condition values on populations from lower altitudes at lentic systems more recently introduced. But higher fork length at age 4 was found in populations from higher altitudes, on older populations with higher prey richness. Habitat type, time since first detection, and fish fauna composition are discussed as the main environmental factors explaining the observed phenotypic plasticity with concerns on predatory impact on native fauna.  相似文献   

9.
We developed a habitat suitability index (HSI) model to evaluate the variability of suitable habitat for neon flying squid (Ommastrephes bartramii) under anomalous environments in the Northwest Pacific Ocean. Commercial fisheries data from the Chinese squid-jigging vessels on the traditional fishing ground bounded by 35°-45°N and 150°-175°E from July to November during 1998-2009 were used for analyses, as well as the environmental variables including sea surface temperature (SST), chlorophyll-a (Chl-a) concentration, sea surface height anomaly (SSHA) and sea surface salinity (SSS). Two empirical HSI models (arithmetic mean model, AMM; geometric mean model, GMM) were established according to the frequency distribution of fishing efforts. The AMM model was found to perform better than the GMM model. The AMM-based HSI model was further validated by the fishery and environmental data in 2010. The predicted HSI values in 1998 (high catch), 2008 (average catch) and 2009 (low catch) indicated that the squid habitat quality was strongly associated with the ENSO-induced variability in the oceanic conditions on the fishing ground. The La Niña events in 1998 tended to yield warm SST and favorable range of Chl-a concentration and SSHA, resulting in high-quality habitats for O. bartramii. While the fishing ground in the El Niño year of 2009 experienced anomalous cool waters and unfavorable range of Chl-a concentration and SSHA, leading to relatively low-quality squid habitats. Our findings suggest that the La Niña event in 1998 tended to result in more favorable habitats for O. bartramii in the Northwest Pacific with the gravity centers of fishing efforts falling within the defined suitable habitat and yielding high squid catch; whereas the El Niño event in 2009 yielded less favorable habitat areas with the fishing effort distribution mismatching the suitable habitat and a dramatic decline of the catch of O. bartramii. This study might provide some potentially valuable insights into exploring the relationship between the underlying squid habitat and the inter-annual environmental change.  相似文献   

10.
Although the costs of reproduction are predicted to vary with the quality of the breeding habitat thereby affecting population dynamics and life‐history trade‐offs, empirical evidence for this pattern remains sparse and equivocal. Costs of reproduction can operate through immediate ecological mechanisms or through delayed intrinsic mechanisms. Ignoring these separate pathways might hinder the identification of costs and the understanding of their consequences. We experimentally investigated the survival costs of reproduction for adult little owls (Athene noctua) within a gradient of habitat quality. We supplemented food to nestlings, thereby relieving the parents’ effort for brood provisioning. We used radio‐tracking and Bayesian multistate modeling based on marked recapture and dead recovery to estimate survival rates of adult little owls across the year as a function of food supplementation and habitat characteristics. Food supplementation to nestlings during the breeding season increased parental survival not only during the breeding season but also during the rest of the year. Thus, the low survival of parents of unfed broods likely represents both, strong ecological and strong intrinsic costs of reproduction. However, while immediate ecological costs occurred also in high‐quality habitats, intrinsic costs carrying over to the post‐breeding period occurred only in low‐quality habitats. Our results suggest that immediate costs resulting from ecological mechanisms such as predation, are high also in territories of high habitat quality. Long‐term costs resulting from intrinsic trade‐offs, however, are only paid in low‐quality habitats. Consequently, differential effects of habitat quality on immediate ecological and delayed intrinsic mechanisms can mask the increase of costs of reproduction in low‐quality breeding habitats. Intrinsic costs may represent an underrated mechanism of habitat quality affecting adult survival rate thereby considerably accelerating population decline in degrading habitats. This study therefore highlights the need for a long‐term perspective to fully assess the costs of reproduction and the role of habitat quality in modifying these costs.  相似文献   

11.
Longevity is highly variable among animal species and has coevolved with other life‐history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life‐history traits independent of body size are largely underexplored for birds. To test associations of life‐history traits and telomere dynamics, we conducted a phylogenetic meta‐analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life‐history traits. We examined 3 principal components of 12 life‐history variables that represented: body size (PC1), the slow–fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small‐to‐medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life‐history variables. TROC, however, was negatively and moderate‐to‐strongly associated with PC2 (unadjusted r = −.340; with phylogenetic correction, r = −.490). Independent of body size, long‐lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian‐related species, yet telomere dynamics are strongly linked to the pace of life.  相似文献   

12.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering.  相似文献   

13.
Senescence is often described as an age‐dependent increase in natural mortality (known as actuarial senescence) and an age‐dependent decrease in fecundity (known as reproductive senescence), and its role in nature is still poorly understood. Based on empirical estimates of reproductive and actuarial senescence, we used mathematical simulations to explore how senescence affects the population dynamics of Coregonus albula, a small, schooling salmonid fish. Using an empirically based eco‐evolutionary model, we investigated how the presence or absence of senescence affects the eco‐evolutionary dynamics of a fish population during pristine, intensive harvest, and recovery phases. Our simulation results showed that the presence or absence of senescence affected how the population responded to the selection regime. At an individual level, gillnetting caused a larger decline in asymptotic length when senescence was present, compared to the nonsenescent population, and the opposite occurred when fishing was done by trawling. This change was accompanied by evolution toward younger age at maturity. At the population level, the change in biomass and number of fish in response to different fishery size‐selection patterns depended on the presence or absence of senescence. Since most life‐history and fisheries models ignore senescence, they may be over‐estimating reproductive capacity and under‐estimating natural mortality. Our results highlight the need to understand the combined effects of life‐history characters such as senescence and fisheries selection regime to ensure the successful management of our natural resources.  相似文献   

14.
  1. Understanding the mechanisms underlying spatial variability of exploited fish is critical for the sustainable management of fish stocks. Empirical studies suggest that size‐selective fishing can elevate fish population spatial variability (i.e., more heterogeneous distribution) through age truncation, making the population less resilient to changing environment. However, species differ in how their spatial variability responds to age truncation and the underlying mechanisms remain unclear.
  2. We hypothesize that age‐specific habitat preference, together with environmental carrying capacity and landscape structure, determines the response of population spatial variability to fishing‐induced age truncation. To test these hypotheses, we design an individual‐based model of an age‐structured fish population on a two‐dimensional landscape under size‐selective fishing. Individual fish reproduces and survives, and moves between habitats according to age‐specific habitat preference and density‐dependent habitat selection.
  3. Population spatial variability elevates with increasing age truncation, and the response is stronger for populations with stronger age‐specific habitat preference. On a gradient landscape, reducing carrying capacity elevates the relative importance of density dependence in habitat selection, which weakens the response of spatial variability to age truncation for populations with strong age‐specific habitat preference. On a fragmented landscape, both populations with strong and weak age‐specific habitat preferences are restricted at local optimal habitats, and reducing carrying capacity weakens the responses of spatial variability to age truncation for both populations.
  4. Synthesis and applications. We demonstrate that to track and predict the changes in population spatial variability under exploitation, it is essential to consider the interactive effects of age‐specific habitat preference, carrying capacity, and landscape structure. To improve spatial management in fisheries, it is crucial to enhance empirical and theoretical developments in the methodology to quantify age‐specific habitat preference of marine fish, and to understand how climatic change influences carrying capacity and landscape continuity.
  相似文献   

15.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

16.
Aposematic animals advertise their toxicity or unpalatability with bright warning coloration. However, acquiring and maintaining chemical defenses can be energetically costly, and consequent associations with other important traits could shape chemical defense evolution. Here, we have tested whether chemical defenses are involved in energetic trade‐offs with other traits, or whether the levels of chemical defenses are condition dependent, by studying associations between biosynthesized cyanogenic toxicity and a suite of key life‐history and fitness traits in a Heliconius butterfly under a controlled laboratory setting. Heliconius butterflies are well known for the diversity of their warning color patterns and widespread mimicry and can both sequester the cyanogenic glucosides of their Passiflora host plants and biosynthesize these toxins de novo. We find energetically costly life‐history traits to be either unassociated or to show a general positive association with biosynthesized cyanogenic toxicity. More toxic individuals developed faster and had higher mass as adults and a tendency for increased lifespan and fecundity. These results thus indicate that toxicity level of adult butterflies may be dependent on individual condition, influenced by genetic background or earlier conditions, with maternal effects as one strong candidate mechanism. Additionally, toxicity was higher in older individuals, consistent with previous studies indicating accumulation of toxins with age. As toxicity level at death was independent of lifespan, cyanogenic glucoside compounds may have been recycled to release resources relevant for longevity in these long‐living butterflies. Understanding the origins and maintenance of variation in defenses is necessary in building a more complete picture of factors shaping the evolution of aposematic and mimetic systems.  相似文献   

17.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

18.
Heterogeneity in the intrinsic quality and nutritional condition of individuals affects reproductive success and consequently fitness. Black brant (Branta bernicla nigricans) are long‐lived, migratory, specialist herbivores. Long migratory pathways and short summer breeding seasons constrain the time and energy available for reproduction, thus magnifying life‐history trade‐offs. These constraints, combined with long lifespans and trade‐offs between current and future reproductive value, provide a model system to examine the role of individual heterogeneity in driving life‐history strategies and individual heterogeneity in fitness. We used hierarchical Bayesian models to examine reproductive trade‐offs, modeling the relationships between within‐year measures of reproductive energy allocation and among‐year demographic rates of individual females breeding on the Yukon‐Kuskokwim Delta, Alaska, using capture–recapture and reproductive data from 1988 to 2014. We generally found that annual survival tended to be buffered against variation in reproductive investment, while breeding probability varied considerably over the range of clutch size‐laying date combinations. We provide evidence for relationships between breeding probability and clutch size, breeding probability and nest initiation date, and an interaction between clutch size and initiation date. Average lifetime clutch size also had a weak positive relationship with apparent survival probability. Our results support the use of demographic buffering strategies for black brant. These results also indirectly suggest associations among environmental conditions during growth, fitness, and energy allocation, highlighting the effects of early growth conditions on individual heterogeneity, and subsequently, lifetime reproductive investment.  相似文献   

19.
20.
The demography and dynamics of migratory bird populations depend on patterns of movement and habitat quality across the annual cycle. We leveraged archival GPS‐tagging data, climate data, remote‐sensed vegetation data, and bird‐banding data to better understand the dynamics of black‐headed grosbeak (Pheucticus melanocephalus) populations in two breeding regions, the coast and Central Valley of California (Coastal California) and the Sierra Nevada mountain range (Sierra Nevada), over 28 years (1992–2019). Drought conditions across the annual cycle and rainfall timing on the molting grounds influenced seasonal habitat characteristics, including vegetation greenness and phenology (maturity dates). We developed a novel integrated population model with population state informed by adult capture data, recruitment rates informed by age‐specific capture data and climate covariates, and survival rates informed by adult capture–mark–recapture data and climate covariates. Population size was relatively variable among years for Coastal California, where numbers of recruits and survivors were positively correlated, and years of population increase were largely driven by recruitment. In the Sierra Nevada, population size was more consistent and showed stronger evidence of population regulation (numbers of recruits and survivors negatively correlated). Neither region showed evidence of long‐term population trend. We found only weak support for most climate–demographic rate relationships. However, recruitment rates for the Coastal California region were higher when rainfall was relatively early on the molting grounds and when wintering grounds were relatively cool and wet. We suggest that our approach of integrating movement, climate, and demographic data within a novel modeling framework can provide a useful method for better understanding the dynamics of broadly distributed migratory species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号