首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the elemental content (%C, N and P) and ratios (C:N, C:P, N:P) of a diverse assemblage of parasitic helminths to ask whether taxonomy or traits were related to stoichiometric variation among species. We sampled 27 macroparasite taxa, spanning four phyla, infecting vertebrate and invertebrate hosts from freshwater ecosystems in New Jersey. Macroparasites varied widely in elemental content, exhibiting 4.7‐fold variation in %N, 4.6‐fold variation in %P, and 11.5‐fold variation in N:P. Across all species, parasite %P scaled negatively and C:P scaled positively with body size. Similar relationships between parasite P content and body size occurred at the phylum level and within individual species. The allometric scaling of P across species supports the growth rate hypothesis, which predicts that smaller taxa require more P to support relatively higher growth rates. Life cycle stage was related to %N and C:N, with non‐reproductive parasite stages lower in %N and higher in C:N than actively reproducing parasites. Parasite phylum, functional feeding group, and trophic level did not explain elemental variation among species. Organismal stoichiometry is linked to ecological function, and wide variation in macroparasite stoichiometry likely generates diverse patterns in host–parasite nutrient dynamics and variable relationships between parasitism and nutrient cycling.  相似文献   

2.
The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.  相似文献   

3.
  1. The development of encompassing general models of ecology is precluded by underrepresentation of certain taxa and systems. Models predicting context‐dependent outcomes of biotic interactions have been tested using plants and bacteria, but their applicability to higher taxa is largely unknown.
  2. We examined context dependency in a reproductive mutualism between two stream fish species: mound nest‐building bluehead chub Nocomis leptocephalus and mountain redbelly dace Chrosomus oreas, which often uses N. leptocephalus nests for spawning. We hypothesized that increased predator density and decreased substrate availability would increase the propensity of C. oreas to associate with N. leptocephalus and decrease reproductive success of both species.
  3. In a large‐scale in situ experiment, we manipulated egg predator density and presence of both symbionts (biotic context), and replicated the experiment in habitats containing high‐ and low‐quality spawning substrate (abiotic context).
  4. Contradictory to our first hypothesis, we observed that C. oreas did not spawn without its host. The interaction outcome switched from commensalistic to mutualistic with changing abiotic and biotic contexts, although the net outcome was mutualistic.
  5. The results of this study yielded novel insight into how context dependency operates in vertebrate mutualisms. Although the dilution effect provided by C. oreas positively influenced reproductive success of N. leptocephalus, it was not enough to overcome both egg predation and poor spawning habitat quality. Outcomes of the interaction may be ultimately determined by associate density. Studies of context dependency in vertebrate systems require detailed knowledge of species life‐history traits.
  相似文献   

4.
The nitrogen and phosphorus content of two temperate fishes, Rutilus rutilus and Perca fluviatilis , and six tropical fishes, Oreochromis niloticus , Cichla monoculus , Serrassalmus rhombeus , Plagioscion squamosissimus , Prochilodus brevis and Hoplias malabaricus , were investigated to test the hypothesis that variation in body P content and N:P ratio is related to body size. Regressions of %P and N:P ratios against fish size (length and mass) confirmed the hypothesis for P. fluviatilis and P. squamosissimus , suggesting that body size is an important factor driving body P content and N:P ratios in some fishes. Moreover, significant increases in %N and N:P ratio with body size was found for H. malabaricus , a common piscivorous fish of the Neotropics. Interspecific variation in %P and N:P ranged two-fold and significant differences ( P < 0·05) were found among the tested species. The mean ± s . d . elemental content across all fishes ( n = 170) was 10·35 ± 1·29% for N and 3·05 ± 0·82% for P, while the N:P ratio was 8·00 ± 2·14. Data on fish body nutrient content and ratio will improve parameterization of bioenergetics and mass balance models and help clarify the role of fishes in nutrient cycles in both temperate and tropical freshwaters.  相似文献   

5.
Invasive Alien Species (IAS) alter ecosystems, disrupting ecological processes and driving the loss of ecosystem services. The common carp Cyprinus carpio is a hazardous and widespread IAS, becoming the most abundant species in many aquatic ecosystems. This species transforms ecosystems by accumulating biomass to the detriment of other species, thus altering food webs. However, some terrestrial species, such as vertebrate scavengers, may benefit from dead carps, by incorporating part of the carp biomass into the terrestrial environment. This study describes the terrestrial vertebrate scavenger assemblage that benefits from carp carcasses in a Mediterranean wetland. We also evaluate the seasonal differences in the scavenger assemblage composition and carrion consumption patterns. Eighty carp carcasses (20 per season) were placed in El Hondo Natural Park, a seminatural mesohaline wetland in south‐eastern Spain, and we monitored their consumption using camera traps. We recorded 14 scavenger species (10 birds and four mammals) consuming carp carcasses, including globally threatened species. Vertebrates consumed 73% of the carrion biomass and appeared consuming at 82% of the carcasses. Of these carcasses consumed, 75% were completely consumed and the mean consumption time of carcasses completely consumed by vertebrates was 44.4 h (SD = 42.1 h). We recorded differences in species richness, abundance, and assemblage composition among seasons, but we did not find seasonal differences in consumption patterns throughout the year. Our study recorded a rich and efficient terrestrial vertebrate scavenger assemblage benefitting from carp carcasses. We detected a seasonal replacement on the scavenger species, but a maintenance of the ecological function of carrion removal, as the most efficient carrion consumers were present throughout the year. The results highlight the importance of vertebrate scavengers in wetlands, removing possible infectious focus, and moving nutrients between aquatic and terrestrial environments.  相似文献   

6.
Traditional methods to measure body lengths of aquatic vertebrates rely on anesthetics, and extended handling times. These procedures can increase stress, potentially affecting the animal''s welfare after its release. We developed a simple procedure using digital images to estimate body lengths of coastal cutthroat trout (Oncorhynchus clarkii clarkii) and larval coastal giant salamander (Dicamptodon tenebrosus). Images were postprocessed using ImageJ2. We measured more than 900 individuals of these two species from 200 pool habitats along 9.6 river kilometers. The percent error (mean ± SE) of our approach compared to the use of a traditional graded measuring board was relatively small for all length metrics of the two species. Total length of trout was −2.2% ± 1.0. Snout–vent length and total length of larval salamanders was 3.5% ± 3.3 and −0.6% ± 1.7, respectively. We cross‐validated our results by two independent observers that followed our protocol to measure the same animals and found no significant differences (p > .7) in body size distributions for all length metrics of the two species. Our procedure provides reliable information of body size reducing stress and handling time in the field. The method is transferable across taxa and the inclusion of multiple animals per image increases sampling efficiency with stored images that can be reviewed multiple times. This practical tool can improve data collection of animal size over large sampling efforts and broad spatiotemporal contexts.  相似文献   

7.
Phenotypic plasticity in defensive traits is a common response of prey organisms to variable and unpredictable predation regimes and risks. Cladocerans of the genus Daphnia are keystone species in the food web of lentic freshwater bodies and are well known for their ability to express a large variety of inducible morphological defenses in response to invertebrate and vertebrate predator kairomones. The developed defenses render the daphnids less susceptible to predation. So far, primarily large‐scale morphological defenses, like helmets, crests, and tail‐spines, have been documented. However, less is known on whether the tiny spinules, rather inconspicuous traits which cover many Daphnia’s dorsal and ventral carapace margins, respond to predator kairomones, as well. For this reason, we investigated two Daphnia species (Dmagna and D. longicephala) concerning their predator kairomone‐induced changes in dorsal and ventral spinules. Since these small, inconspicuous traits may only act as a defense against predatory invertebrates, with fine‐structured catching apparatuses, and not against vertebrate predators, we exposed them to both, an invertebrate (Triops cancriformis or Notontecta maculata) and a vertebrate predator (Leucaspius delineatus). Our results show that the length of these spinules as well as spinules‐covered areas vary, likely depending on the predator the prey is exposed to. We further present first indications of a Daphnia species‐specific elongation of the spinules and an increase of the spinules‐bearing areas. Although we cannot exclude that spinescence is altered because it is developmentally connected to changes in body shape in general, our results suggest that the inducible alterations to the spinule length and spinules‐covered areas disclose another level of predator‐induced changes in two common Daphnia species. The predator‐induced changes on this level together with the large‐scale and ultrastructural defensive traits may act as the overall morphological defense, adjusted to specific predator regimes in nature.  相似文献   

8.
In many insect taxa, there is a well‐established trade‐off between flight capability and reproduction. The wing types of Acridoidea exhibit extremely variability from full length to complete loss in many groups, thus, provide a good model for studying the trade‐off between flight and reproduction. In this study, we completed the sampling of 63 Acridoidea species, measured the body length, wing length, body weight, flight muscle weight, testis and ovary weight, and the relative wing length (RWL), relative flight muscle weight (RFW), and gonadosomatic index (GSI) of different species were statistically analyzed. The results showed that there were significant differences in RWL, RFW, and GSI among Acridoidea species with different wing types. RFW of long‐winged species was significantly higher than that of short‐winged and wingless species (p < .01), while GSI of wingless species was higher than that of long‐winged and short‐winged species. The RWL and RFW had a strong positive correlation in species with different wing types (correlation coefficient r = .8344 for male and .7269 for female, and p < .05), while RFW was strong negatively correlated with GSI (r = −.2649 for male and −.5024 for female, and p < .05). For Acridoidea species with wing dimorphism, males with relatively long wings had higher RFW than that of females with relatively short wings, while females had higher GSI. Phylogenetic comparative analysis showed that RWL, RFW, and GSI all had phylogenetic signals and phylogenetic dependence. These results revealed that long‐winged individuals are flight capable at the expense of reproduction, while short‐winged and wingless individuals cannot fly, but has greater reproductive output. The results support the trade‐off between flight and reproduction in Acridoidea.  相似文献   

9.
10.
Nitrogen enrichment is pervasive in forest ecosystems, but its influence on understory plant communities and their stoichiometric characteristics is poorly understood. We hypothesize that when forest is enriched with nitrogen (N), the stoichiometric characteristics of plant species explain changes in understory plant diversity. A 13‐year field experiment was conducted to explore the effects of N addition on foliar carbon (C): N: phosphorus (P) stoichiometry, understory plant species richness, and intrinsic water use efficiency (iWUE) in a subtropical Chinese fir forest. Four levels of N addition were applied: 0, 6, 12, and 24 g m−2 year−1. Individual plant species were categorized into resistant plants, intermediate resistant plants, and sensitive plants based on their response to nitrogen addition. Results showed that N addition significantly decreased the number of species, genera, and families of herbaceous plants. Foliar N:P ratios were greater in sensitive plants than resistant or intermediate resistant plants, while iWUE showed an opposite trend. However, no relationship was detected between soil available N and foliar N, and soil N:P and foliar N:P ratios. Our results indicated that long‐term N addition decreased the diversity of understory plants in a subtropical forest. Through regulating water use efficiency with N addition, sensitive plants change their N:P stoichiometry and have a higher risk of mortality, while resistant plants maintain a stable N:P stoichiometry, which contributes to their survival. These findings suggest that plant N:P stoichiometry plays an important role in understory plant performance in response to environmental change of N.  相似文献   

11.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

12.
The use of biologging and tracking devices is widespread in avian behavioral and ecological studies. Carrying these devices rarely has major behavioral or fitness effects in the wild, yet it may still impact animals in more subtle ways, such as during high power demanding escape maneuvers. Here, we tested whether or not great tits (Parus major) carrying a backpack radio‐tag changed their body mass or flight behavior over time to compensate for the detrimental effect of carrying a tag. We tested 18 great tits, randomly assigned to a control (untagged) or one of two different types of a radio‐tag as used in previous studies in the wild (0.9 g or 1.2 g; ~5% or ~6–7% of body mass, respectively), and determined their upward escape‐flight performance 1, 7, 14, and 28 days after tagging. In between experiments, birds were housed in large free‐flight aviaries. For each escape‐flight, we used high‐speed 3D videography to determine flight paths, escape‐flight speed, wingbeat frequency, and actuator disk loading (ratio between the bird weight and aerodynamic thrust production capacity). Tagged birds flew upward with lower escape‐flight speeds, caused by an increased actuator disk loading. During the 28‐day period, all groups slightly increased their body mass and their in‐flight wingbeat frequency. In addition, during this period, all groups of birds increased their escape‐flight speed, but tagged birds did so at a lower rate than untagged birds. This suggests that birds may increase their escape‐flight performance through skill learning; however, tagged birds still remained slower than controls. Our findings suggest that tagging a songbird can have a prolonged effect on the performance of rapid flight maneuvers. Given the absence of tag effects on reproduction and survival in most songbird radio‐tagging studies, tagged birds in the wild might adjust their risk‐taking behavior to avoid performing rapid flight maneuvers.  相似文献   

13.
  1. The recovery of terrestrial carnivores in Europe is a conservation success story. Initiatives focused on restoring top predators require information on how resident species may interact with the re‐introduced species as their interactions have the potential to alter food webs, yet such data are scarce for Europe.
  2. In this study, we assessed patterns of occupancy and interactions between three carnivore species in the Romanian Carpathians. Romania houses one of the few intact carnivore guilds in Europe, making it an ideal system to assess intraguild interactions and serve as a guide for reintroductions elsewhere.
  3. We used camera trap data from two seasons in Transylvanian forests to assess occupancy and co‐occurrence of carnivores using multispecies occupancy models.
  4. Mean occupancy in the study area was highest for lynx (Ψwinter = 0.76 95% CI: 0.42–0.92; Ψautumn = 0.71 CI: 0.38–0.84) and wolf (Ψwinter = 0.60 CI: 0.34–0.78; Ψautumn = 0.81 CI: 0.25–0.95) and lowest for wildcat (Ψwinter = 0.40 CI: 0.19–0.63; Ψautumn = 0.52 CI: 0.17–0.78)
  5. We found that marginal occupancy predictors for carnivores varied between seasons. We also found differences in predictors of co‐occurrence between seasons for both lynx‐wolf and wildcat‐wolf co‐occurrence. For both seasons, we found that conditional occupancy probabilities of all three species were higher when another species was present.
  6. Our results indicate that while there are seasonal differences in predictors of occupancy and co‐occurrence of the three species, co‐occurrence in our study area is high.
  7. Terrestrial carnivore recovery efforts are ongoing worldwide. Insights into interspecific relations between carnivore species are critical when considering the depauperate communities they are introduced in. Our work showcases that apex carnivore coexistence is possible, but dependent on protection afforded to forest habitats and their prey base.
  相似文献   

14.
Dispersal plays a vital role in the geographical distribution, population genetic structure, quantity dynamics, and evolution of a species. Sex‐biased dispersal is common among vertebrates and many studies have documented a tendency toward male‐biased dispersal in mammals and female‐biased dispersal in birds. However, dispersal patterns in reptiles remain poorly understood. In this study, we explored the genetic diversity and dispersal patterns of the widely distributed Asian pitviper Protobothrops mucrosquamatus. In total, 16 polymorphic microsatellite loci were screened in 150 snakes (48 males, 44 females, 58 samples without sex information) covering most of their distribution. Microsatellite analysis revealed high genetic diversity in Pmucrosquamatus. Bayesian clustering of population assignment identified two major clusters for all populations, somewhat inconsistent with the mitochondrial DNA phylogeny of Pmucrosquamatus reported in previous research. Analyses based on 92 sex‐determined and 37 samples of Pmucrosquamatus from three small sites in Sichuan, China (Mingshan, Yibin, and Zizhong) consistently suggested female‐biased dispersal in Pmucrosquamatus, which is the first example of this pattern in snakes. The female‐biased dispersal patterns in Pmucrosquamatus may be explained by local resource competition.  相似文献   

15.
White‐nose syndrome (WNS) is a disease caused by the fungus Pseudogymnoascus destructans which has resulted in the deaths of millions of bats across eastern North America. To date, hibernacula counts have been the predominant means of tracking the spread and impact of this disease on bat populations. However, an understanding of the impacts of WNS on demographic parameters outside the winter season is critical to conservation and recovery of bat populations impacted by this disease. We used long‐term monitoring data to examine WNS‐related impacts to summer populations in West Virginia, where WNS has been documented since 2009. Using capture data from 290 mist‐net sites surveyed from 2003 to 2019 on the Monongahela National Forest, we estimated temporal patterns in presence and relative abundance for each bat species. For species that exhibited a population‐level response to WNS, we investigated post‐WNS changes in adult female reproductive state and body mass. Myotis lucifugus (little brown bat), M. septentrionalis (northern long‐eared bat), and Perimyotis subflavus (tri‐colored bat) all showed significant decreases in presence and relative abundance during and following the introduction of WNS, while Eptesicus fuscus (big brown bat) and Lasiurus borealis (eastern red bat) responded positively during the WNS invasion. Probability of being reproductively active was not significantly different for any species, though a shift to earlier reproduction was estimated for E. fuscus and M. septentrionalis. For some species, body mass appeared to be influenced by the WNS invasion, but the response differed by species and reproductive state. Results suggest that continued long‐term monitoring studies, additional research into impacts of this disease on the fitness of WNS survivors, and a focus on providing optimal nonwintering habitat may be valuable strategies for assessing and promoting recovery of WNS‐affected bat populations.  相似文献   

16.
J. R. Caradus 《Plant and Soil》1992,146(1-2):209-217
Ninety eight white clover genotypes were cloned and grown in pots at two levels of phosphorus (P) supply in soil. After harvest the nitrogen (N) and P content of shoot (leaf, petiole and unrooted stolon), stolon and root tissue was determined. Broad sense heritabilities for %N, %P, and proportion of total N or P in each tissue type were calculated. Heritabilities ranged from 0.22 to 0.68. They were generally higher for %P than %N; and higher in shoot and stolon tissue than root tissue for %P, %N, and proportion of N or P. Level of P in which plants were grown had little effect on heritability values. Genotypes from bred cultivars differed from those collected from hill country pastures for plant size, and partitioning of N and P to shoot, stolon and root. Relationships between plant characters were examined to determine the consequences of selection.  相似文献   

17.
The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ~3.2%(±0.6), average %N~10.7%(±0.9), and average %C~41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory.  相似文献   

18.
Whole‐genome duplication (WGD) events occur in all kingdoms and have been hypothesized to promote adaptability. WGDs identified in the early history of vertebrates, teleosts, and angiosperms have been linked to the large‐scale diversification of these lineages. However, the mechanics and full outcomes of WGD regarding potential evolutionary impacts remain a topic of debate. The Corydoradinae are a diverse subfamily of Neotropical catfishes with over 170 species described and a history of WGDs. They are divided into nine mtDNA lineages, with species coexisting in sympatric—and often mimetic—communities containing representatives of two or more of the nine lineages. Given their similar life histories, coexisting species of Corydoras might be exposed to similar parasite loads and because of their different histories of WGD and genome size they provide a powerful system for investigating the impacts of WGD on immune diversity and function in an animal system. Here, we compared parasite counts and the diversity of the immune‐related toll‐like receptors (TLR) in two coexisting species of Corydoras catfish (C. maculifer and C. araguaiaensis), one diploid and one putative tetraploid. In the putative tetraploid C. araguaiaensis, we found significantly lower numbers of parasites and significantly higher diversity (measured by both synonymous and nonsynonymous SNP counts) in two TLR genes than in the diploid C. maculifer. These results provide insight into how WGD may impact evolution, in this case by providing greater immunogenetic diversity.  相似文献   

19.
The Omei wood frog (Rana omeimontis), endemic to central China, belongs to the family Ranidae. In this study, we achieved detail knowledge about the mitogenome of the species. The length of the genome is 20,120 bp, including 13 protein‐coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a noncoding control region. Similar to other amphibians, we found that only nine genes (ND6 and eight tRNA genes) are encoded on the light strand (L) and other genes on the heavy strand (H). Totally, The base composition of the mitochondrial genome included 27.29% A, 28.85% T, 28.87% C, and 15.00% G, respectively. The control regions among the Rana species were found to exhibit rich genetic variability and A + T content. R. omeimontis was clustered together with R. chaochiaoensis in phylogenetic tree. Compared to R. amurensis and R. kunyuensi, it was more closely related to R. chaochiaoensis, and a new way of gene rearrangement (ND6‐trnE‐Cytb‐D‐loop‐trnL2 (CUN)‐ND5‐D‐loop) was also found in the mitogenome of R. amurensis and R. kunyuensi. Our results about the mitochondrial genome of R. omeimontis will contribute to the future studies on phylogenetic relationship and the taxonomic status of Rana and related Ranidae species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号