首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nearest-neighbor thermodynamic parameters of the ‘universal pairing base’ deoxyinosine were determined for the pairs I·C, I·A, I·T, I·G and I·I adjacent to G·C and A·T pairs. Ultraviolet absorbance melting curves were measured and non-linear regression performed on 84 oligonucleotide duplexes with 9 or 12 bp lengths. These data were combined with data for 13 inosine containing duplexes from the literature. Multiple linear regression was used to solve for the 32 nearest-neighbor unknowns. The parameters predict the Tm for all sequences within 1.2°C on average. The general trend in decreasing stability is I·C > I·A > I·T ≈ I· G > I·I. The stability trend for the base pair 5′ of the I·X pair is G·C > C·G > A·T > T·A. The stability trend for the base pair 3′ of I·X is the same. These trends indicate a complex interplay between H-bonding, nearest-neighbor stacking, and mismatch geometry. A survey of 14 tandem inosine pairs and 8 tandem self-complementary inosine pairs is also provided. These results may be used in the design of degenerate PCR primers and for degenerate microarray probes.  相似文献   

2.
High-resolution amplicon melting is a simple method for genotyping that uses only generic PCR primers and a saturating DNA dye. Multiplex amplicon genotyping has previously been reported in a single color, but two instruments were required: a carousel-based rapid cycler and a high-resolution melting instrument for capillaries. Manual transfer of capillaries between instruments and sequential melting of each capillary at 0.1°C/s seriously limited the throughput. In this report, a single instrument that combines rapid-cycle real-time PCR with high-resolution melting [LightScanner-32 (LS-32), Idaho Technology, Salt Lake City, UT] was used for multiplex amplicon genotyping. The four most common mutations associated with thrombophilia, F5 (factor V Leiden 1691G>A), F2 (prothrombin 20210G>A), and methylenetetrahydrofolate reductase (MTHFR; 1298A>C and 677C>T) were genotyped in a single homogeneous assay with internal controls to adjust for minor chemistry and instrument variation. Forty temperature cycles required 9.2 min, and each capillary required 2.2 min by melting at 0.3°C/s, 3× the prior rate. Sample volume was reduced from 20 μl to 10 μl. In a blinded study of 109 samples (436 genotypes), complete concordance with standard assays was obtained. In addition, the rare variant MTHFR 1317T>C was genotyped correctly when present. The LS-32 simplifies more complex high-resolution melting assays by reducing hands-on manipulation, total time of analysis, and reagent cost while maintaining the resolution necessary for multiplex amplicon genotyping.  相似文献   

3.
We compared here 80 different sequences containing four tracts of three guanines with loops of variable length (between 1 and 15 bases for unmodified sequences, up to 30 for fluorescently labeled oligonucleotides). All sequences were capable of forming stable quadruplexes, with Tm above physiological temperature in most cases. Unsurprisingly, the melting temperature was systematically lower in sodium than in potassium but the difference between both ionic conditions varied between 1 and >39°C (average difference: 18.3°C). Depending on the sequence context, and especially for G4 sequences involving two very short loops, the third one may be very long without compromising the stability of the quadruplex. A strong inverse correlation between total loop length and Tm was found in K+: each added base leads to a 2°C drop in Tm or ∼0.3 kcal/mol loss in ΔG°. The trend was less clear in Na+, with a longer than expected optimal loop length (up to 5 nt). This study will therefore extend the sequence repertoire of quadruplex-prone sequences, arguing for a modification of the widely used consensus (maximal loop size of 7 bases).  相似文献   

4.
We have studied hybridisation affinities and fluorescence behaviour of intercalator-modified oligonucleotides. The phosphoramidite of (S)-1-O-(4, 4′-dimethoxytriphenylmethyl)-3-O-(1-pyrenylmethyl)glycerol, an intercalating pseudo-nucleotide (IPN), was synthesised and by standard methods inserted into 7mer and 13mer oligodeoxyribonucleotides (ODNs) to generate intercalating nucleic acids (INAs). INAs showed greatly increased affinity for complementary single-stranded DNA (ssDNA), as determined by a thermal stabilisation of the formed DNA/INA duplex of up to 10.9°C per modification when the IPN was added as a dangling end and up to 6.7°C per modification when the IPN was inserted as a bulge. There was a positive stabilisation effect of the formed DNA/INA duplex on introducing a second IPN in the INA strand, when the two IPNs were separated by at least 1 bp. The effect is more pronounced the larger the separation of the two IPNs. Contrary to the enhanced affinity for ssDNA, the IPNs lower the affinity for complementary single-stranded RNA (ssRNA), giving rise to a difference in melting temperature of up to 25.8°C for two IPN insertions in an RNA/INA duplex when compared with the corresponding DNA/INA duplex. In this way INA is able to discriminate ssDNA over ssRNA with identical sequences. Fluorescence measurements show a stronger interaction of the pyrene moiety with DNA than with RNA, indicating intercalation as the stabilising factor in DNA/INA duplexes.  相似文献   

5.
Variable temperature 1H-nuclear magnetic resonance (NMR) has been used to study the interaction of the RNA trimer, GpCpA, with the intercalators ethidium bromide and the acridine derivatives; proflavin, 9-amino-acridine, acridine orange, acridine yellow and acriflavin. The complexes formed were studied at nucleic acid to drug ratios of 1:1 and 5:1, the latter being useful in defining the effects of structural variation in the acridine series and in determining the site of intercalation. All the intercalators greatly stabilized the oligonucleotide duplex, the average melting temperature (Tm) increasing by up to 30 degrees C. Significant changes in individual Tms and chemical shifts were observed for all the GpCpA protons. 9-Amino-acridine and acriflavin did not stabilize the GpCpA duplex as substantially as the other acridine derivatives. It is suggested that this intercalator:GpCpA system, and its associated NMR-derived Tm, is a useful physical probe for potential mutagens.  相似文献   

6.
We developed a DNA microarray suitable for simultaneous detection and discrimination between multiple bacterial species based on 16S ribosomal DNA (rDNA) polymorphisms using glass slides. Microarray probes (22- to 31-mer oligonucleotides) were spotted onto Teflon-masked, epoxy-silane-derivatized glass slides using a robotic arrayer. PCR products (ca. 199 bp) were generated using biotinylated, universal primer sequences, and these products were hybridized overnight (55°C) to the microarray. Targets that annealed to microarray probes were detected using a combination of Tyramide Signal Amplification and Alexa Fluor 546. This methodology permitted 100% specificity for detection of 18 microbes, 15 of which were fish pathogens. With universal 16S rDNA PCR (limited to 28 cycles), detection sensitivity for purified control DNA was equivalent to <150 genomes (675 fg), and this sensitivity was not adversely impacted either by the presence of competing bacterial DNA (1.1 × 106 genomes; 5 ng) or by the addition of up to 500 ng of fish DNA. Consequently, coupling 16S rDNA PCR with a microarray detector appears suitable for diagnostic detection and surveillance for commercially important fish pathogens.  相似文献   

7.
A common challenge encountered during development of high concentration monoclonal antibody formulations is preventing self-association. Depending on the antibody and its formulation, self-association can be seen as aggregation, precipitation, opalescence or phase separation. Here we report on an unusual manifestation of self-association, formation of a semi-solid gel or “gelation." Therapeutic monoclonal antibody C4 was isolated from human B cells based on its strong potency in neutralizing bacterial toxin in animal models. The purified antibody possessed the unusual property of forming a firm, opaque white gel when it was formulated at concentrations >30 mg/mL and the temperature was <6°C. Gel formation was reversible with temperature. Gelation was affected by salt concentration or pH, suggesting an electrostatic interaction between IgG monomers. A comparison of the C4 amino acid sequences to consensus germline sequences revealed differences in framework regions. A C4 variant in which the framework sequence was restored to the consensus germline sequence did not gel at 100 mg/mL at temperatures as low as 1°C. Additional genetic analysis was used to predict the key residue(s) involved in the gelation. Strikingly, a single substitution in the native antibody, replacing heavy chain glutamate 23 with lysine (E23K), was sufficient to prevent gelation. These results indicate that the framework region is involved in intermolecular interactions. The temperature dependence of gelation may be related to conformational changes near glutamate 23 or the regions it interacts with. Molecular engineering of the framework can be an effective approach to resolve the solubility issues of therapeutic antibodies.  相似文献   

8.
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient''s prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).  相似文献   

9.
The HIV-1 type dimerization initiation signal (DIS) loop was used as a starting point for the analysis of the stability of Watson–Crick (WC) base pairs in a tertiary structure context. We used ultraviolet melting to determine thermodynamic parameters for loop–loop tertiary interactions and compared them with regular secondary structure RNA helices of the same sequences. In 1 M Na+ the loop–loop interaction of a HIV-1 DIS type pairing is 4 kcal/mol more stable than its sequence in an equivalent regular and isolated RNA helix. This difference is constant and sequence independent, suggesting that the rules governing the stability of WC base pairs in the secondary structure context are also valid for WC base pairs in the tertiary structure context. Moreover, the effect of ion concentration on the stability of loop–loop tertiary interactions differs considerably from that of regular RNA helices. The stabilization by Na+ and Mg2+ is significantly greater if the base pairing occurs within the context of a loop–loop interaction. The dependence of the structural stability on salt concentration was defined via the slope of a Tm/log [ion] plot. The short base-paired helices are stabilized by 8°C/log [Mg2+] or 11°C/log [Na+], whereas base-paired helices forming tertiary loop–loop interactions are stabilized by 16°C/log [Mg2+] and 26°C/log [Na+]. The different dependence on ionic strength that is observed might reflect the contribution of specific divalent ion binding to the preformation of the hairpin loops poised for the tertiary kissing loop–loop contacts.  相似文献   

10.
Genetic analysis for germline mutations of RET proto‐oncogene has provided a basis for individual management of medullary thyroid carcinoma (MTC) and pheochromocytoma. Most of compound mutations have more aggressive phenotypes than single point mutations, but the compound C634Y/V292M variant in MTC has never been reported. Thus, we retrospectively investigated synergistic effect of C634Y and V292M RET germline mutations in family members with multiple endocrine neoplasia type 2A. Nine of 14 family members in a northern Chinese family underwent RET mutation screening using next‐generation sequencing and PCR followed by direct bidirectional DNA sequencing. Clinical features of nine individuals were retrospectively carefully reviewed. In vitro, the scratch‐wound assay was used to investigate the difference between the cells carrying different mutations. We find no patients died of MTC. All 3 carriers of the V292M variant were asymptomatic and did not have biochemical or structural evidence of disease (age: 82, 62 and 58). Among 4 C634Y mutation carriers, 2 patients had elevated calcitonin with the highest (156 pg/mL) in an 87‐year‐old male. Two carriers of compound C634Y/V292M trans variant had bilateral MTC with pheochromocytoma or lymph node metastasis (age: 54 and 41 years, respectively). Further, the compound C634Y/V292M variant had a faster migration rate than either single point mutation in vitro (P < .05). In conclusion, the V292M RET variant could be classified as ‘likely benign’ according to ACMG (2015). The compound variant V292M/C634Y was associated with both more aggressive clinical phenotype and faster cell growth in vitro than was either single mutation.  相似文献   

11.
A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (Kd < 1 nM, koff < 0.01 s−1) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1–100 pM and 23–46°C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.  相似文献   

12.
Conjugation of DNA intercalators to triple helix forming oligodeoxynucleotides (ODN's) can enhance ODN binding properties and consequently their potential ability to modulate gene expression. To test the hypothesis that linkage structure could strongly influence the binding enhancement of intercalator conjugation with triplex forming ODN's, we have used a model system to investigate binding avidity of short oligomers conjugated to DNA intercalators through various linkages. Using a dA10.T10 target sequence imbedded in a 20 bp duplex, binding avidities of a T10 ODN joined to the DNA intercalator 6,9-diamino, 3-methoxy acridine (DAMA) by 8 different 5' linkages were measured using an electrophoretic mobility shift assay. Although unmodified T10 has a very limited capacity for stable binding under these conditions (apparent Kd > 250 microM at 4 degrees C), conjugation to DAMA using flexible linkers of certain lengths and chemical compositions greatly enhanced binding (Kd of 1 microM at 4 degrees C). Other linkers, however, modestly enhanced binding or had no effect on binding at all. Thus, the length, flexibility, and chemical composition of linker structures all substantially influence intercalator conjugated oligodeoxynucleotide binding avidity.  相似文献   

13.
Mutations in the CFTR gene that lead to premature stop codons or splicing defects cause cystic fibrosis (CF) and are not amenable to treatment by small-molecule modulators. Here, we investigate the use of adenine base editor (ABE) ribonucleoproteins (RNPs) that convert A•T to G•C base pairs as a therapeutic strategy for three CF-causing mutations. Using ABE RNPs, we corrected in human airway epithelial cells premature stop codon mutations (R553X and W1282X) and a splice-site mutation (3849 + 10 kb C > T). Following ABE delivery, DNA sequencing revealed correction of these pathogenic mutations at efficiencies that reached 38–82% with minimal bystander edits or indels. This range of editing was sufficient to attain functional correction of CFTR-dependent anion channel activity in primary epithelial cells from CF patients and in a CF patient-derived cell line. These results demonstrate the utility of base editor RNPs to repair CFTR mutations that are not currently treatable with approved therapeutics.  相似文献   

14.
Influence of loop size on the stability of intramolecular DNA quadruplexes   总被引:9,自引:6,他引:3  
We have determined the stability of intramolecular DNA quadruplexes in which the four G3-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2°C min–1. CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima ~244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.  相似文献   

15.
16.
Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.  相似文献   

17.
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5′-nucleases with an energy minimization algorithm that utilizes the 5′-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5′-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific ‘bridge’ probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37°C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.  相似文献   

18.
19.
Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed.  相似文献   

20.
Although the thermophilic bacterium Thermus aquaticus grows optimally at 70°C and cannot grow at moderate temperatures, its DNA polymerase I has significant activity at 20–37°C. This activity is a bane to some PCRs, since it catalyzes non-specific priming. We report mutations of Klentaq (an N-terminal deletion variant) DNA polymerase that have markedly reduced activity at 37°C yet retain apparently normal activity at 68°C and resistance at 95°C. The first four of these mutations are clustered on the outside surface of the enzyme, nowhere near the active site, but at the hinge point of a domain that has been proposed to move at each cycle of nucleotide incorporation. We show that the novel cold-sensitive mutants can provide a hot start for PCR and exhibit slightly improved fidelity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号