首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ono T  Losada A  Hirano M  Myers MP  Neuwald AF  Hirano T 《Cell》2003,115(1):109-121
The canonical condensin complex (henceforth condensin I) plays an essential role in mitotic chromosome assembly and segregation from yeast to humans. We report here the identification of a second condensin complex (condensin II) from vertebrate cells. Condensins I and II share the same pair of structural maintenance of chromosomes (SMC) subunits but contain different sets of non-SMC subunits. siRNA-mediated depletion of condensin I- or condensin II-specific subunits in HeLa cells produces a distinct, highly characteristic defect in chromosome morphology. Simultaneous depletion of both complexes causes the severest defect. In Xenopus egg extracts, condensin I function is predominant, but lack of condensin II results in the formation of irregularly shaped chromosomes. Condensins I and II show different distributions along the axis of chromosomes assembled in vivo and in vitro. We propose that the two condensin complexes make distinct mechanistic contributions to mitotic chromosome architecture in vertebrate cells.  相似文献   

2.
Enterovirus 71 (EV71) is one causative agent of hand, foot, and mouth disease (HFMD), which may lead to severe neurological disorders and mortality in children. EV71 genome is a positive single-stranded RNA containing a single open reading frame (ORF) flanked by 5′-untranslated region (5′UTR) and 3′UTR. The 5′UTR is fundamentally important for virus replication by interacting with cellular proteins. Here, we revealed that poly(C)-binding protein 1 (PCBP1) specifically binds to the 5′UTR of EV71. Detailed studies indicated that the RNA-binding K-homologous 1 (KH1) domain of PCBP1 is responsible for its binding to the stem-loop I and IV of EV71 5′UTR. Interestingly, we revealed that PCBP1 is distributed in the nucleus and cytoplasm of uninfected cells, but mainly localized in the cytoplasm of EV71-infected cells due to interaction and co-localization with the viral RNA. Furthermore, sub-cellular distribution analysis showed that PCBP1 is located in ER-derived membrane, in where virus replication occurred in the cytoplasm of EV71-infected cells, suggesting PCBP1 is recruited in a membrane-associated replication complex. In addition, we found that the binding of PCBP1 to 5′UTR resulted in enhancing EV71 viral protein expression and virus production so as to facilitate viral replication. Thus, we revealed a novel mechanism in which PCBP1 as a positive regulator involved in regulation of EV71 replication in the host specialized membrane-associated replication complex, which provides an insight into cellular factors involved in EV71 replication.  相似文献   

3.
4.
5.
The 3′ untranslated region (3′UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3′UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3′UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3′UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3′UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3′UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3′UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3′UTR HAstV-8 and is required or participates in viral replication.  相似文献   

6.
7.
8.
9.
Onn I  Aono N  Hirano M  Hirano T 《The EMBO journal》2007,26(4):1024-1034
Vertebrate cells possess two different condensin complexes, known as condensin I and condensin II, that play a fundamental role in chromosome assembly and segregation during mitosis. Each complex contains a pair of structural maintenance of chromosomes (SMC) ATPases, a kleisin subunit and two HEAT-repeat subunits. Here we use recombinant human condensin subunits to determine their geometry within each complex. We show that both condensin I and condensin II have a pseudo-symmetrical structure, in which the N-terminal half of kleisin links the first HEAT subunit to SMC2, whereas its C-terminal half links the second HEAT subunit to SMC4. No direct interactions are detectable between the SMC dimer and the HEAT subunits, indicating that the kleisin subunit acts as the linchpin in holocomplex assembly. ATP has little, if any, effects on the assembly and integrity of condensin. Cleavage pattern of SMC2 by limited proteolysis is changed upon its binding to ATP or DNA. Our results shed new light on the architecture and dynamics of this highly elaborate machinery designed for chromosome assembly.  相似文献   

10.
Meiosis is a specialized cell division essential for sexual reproduction. During meiosis the chromosomes are highly organized, and correct chromosome architecture is required for faithful segregation of chromosomes at anaphase I and II. Condensin is involved in chromosome organization during meiotic and mitotic cell divisions. Three condensin subunits, AtSMC4 and the condensin I and II specific subunits AtCAP‐D2 and AtCAP‐D3, respectively, have been studied for their role in meiosis. This has revealed that both the condensin I and condensin II complexes are required to maintain normal structural integrity of the meiotic chromosomes during the two nuclear divisions. Their roles appear functionally distinct in that condensin I is required to maintain normal compaction of the centromeric repeats and 45S rDNA, whereas loss of condensin II was associated with extensive interchromosome connections at metaphase I. Depletion of condensin is also associated with a slight reduction in crossover formation, suggesting a role during meiotic prophase I.  相似文献   

11.
12.
13.
Long INterspersed Element one (LINE-1, or L1), is a widely distributed, autonomous retrotransposon in mammalian genomes. During retrotransposition, L1 RNA functions first as a dicistronic mRNA and then as a template for cDNA synthesis. Previously, we defined internal ribosome entry sequences (IRESs) upstream of both ORFs (ORF1 and ORF2) in the dicistronic mRNA encoded by mouse L1. Here, RNA affinity chromatography was used to isolate cellular proteins that bind these regions of L1 RNA. Four proteins, the heterogeneous nuclear ribonucleoproteins (hnRNPs) R, Q and L, and nucleolin (NCL), appeared to interact specifically with the ORF2 IRES. These were depleted from HeLa cells to examine their effects on L1 IRES-mediated translation and L1 retrotransposition. NCL knockdown specifically reduced the ORF2 IRES activity, L1 and L1-assisted Alu retrotransposition without altering L1 RNA or protein abundance. These findings are consistent with NCL acting as an IRES trans-acting factor (ITAF) for ORF2 translation and hence a positive host factor for L1 retrotransposition. In contrast, hnRNPL knockdown dramatically increased L1 retrotransposition as well as L1 RNA and ORF1 protein, indicating that this cellular protein normally interferes with retrotransposition. Thus, hnRNPL joins a small, but growing list of cellular proteins that are potent negative regulators of L1 retrotransposition.  相似文献   

14.
15.
The positive-strand RNA genome of the Hepatitis C virus (HCV) contains an internal ribosome entry site (IRES) in the 5′untranslated region (5′UTR) and structured sequence elements within the 3′UTR, but no poly(A) tail. Employing a limited set of initiation factors, the HCV IRES coordinates the 5′cap-independent assembly of the 43S pre-initiation complex at an internal initiation codon located in the IRES sequence. We have established a Huh7 cell-derived in vitro translation system that shows a 3′UTR-dependent enhancement of 43S pre-initiation complex formation at the HCV IRES. Through the use of tobramycin (Tob)-aptamer affinity chromatography, we identified the Insulin-like growth factor-II mRNA-binding protein 1 (IGF2BP1) as a factor that interacts with both, the HCV 5′UTR and 3′UTR. We report that IGF2BP1 specifically enhances translation at the HCV IRES, but it does not affect 5′cap-dependent translation. RNA interference against IGF2BP1 in HCV replicon RNA-containing Huh7 cells reduces HCV IRES-mediated translation, whereas replication remains unaffected. Interestingly, we found that endogenous IGF2BP1 specifically co-immunoprecipitates with HCV replicon RNA, the ribosomal 40S subunit, and eIF3. Furthermore eIF3 comigrates with IGF2BP1 in 80S ribosomal complexes when a reporter mRNA bearing both the HCV 5′UTR and HCV 3′UTR is translated. Our data suggest that IGF2BP1, by binding to the HCV 5′UTR and/or HCV 3′UTR, recruits eIF3 and enhances HCV IRES-mediated translation.  相似文献   

16.
17.
The long interspersed elements-1 (LINE1 or L1 retrotransposon) constitute 17 % of the human genome and retain mobility properties within the genome. At present, 80–100 human L1 elements are thought to be active in the genome. The mobilization of these active elements may be influenced upon exposure to the heavy metals. In the present study, we evaluated the association of aluminum, lead, and copper exposure with L1 retrotransposition in human hepatocellular carcinoma (HepG2) cell line. An in vitro retrotransposition assay using an enhanced green fluorescent protein (EGFP)-tagged L1RP cassette was established to track EGFP shining as the mark of retrotransposition. Following determination of noncytotoxic concentrations of these metals, pL1RP-EGFP-transfected HepG2 cells were subjected to long-term treatment. Flow cytometry analysis of cells treated with various concentrations of these metals along with quantitative real-time PCR was used to quantify L1 retrotransposition frequencies. Aluminum significantly increased L1 retrotransposition frequency, while no significant association was found concerning lead exposure and L1 retrotransposition. Copper treatment downregulated L1 retrotransposition as a result of EGFP-tagged L1RP expression. Our findings suggest that aluminum might have the potential to cause genomic instability by the enhancement of L1 mobilization. Thus, the risk of induced L1 retrotransposition should be considered during drug safety evaluation and risk assessments of exposure to toxic environmental agents. Further studies are needed for a more robust assay to evaluate any associations between long-term lead exposure and L1 mobility in cell culture assay.  相似文献   

18.
Condensins are heteropentameric complexes that were first identified as structural components of mitotic chromosomes. They are composed of two SMC (structural maintenance of chromosomes) and three non-SMC subunits. Condensins play a role in the resolution and segregation of sister chromatids during mitosis, as well as in some aspects of mitotic chromosome assembly. Two distinct condensin complexes, condensin I and condensin II, which differ only in their non-SMC subunits, exist. Here, we used an RNA interference approach to deplete hCAP-D2, a non-SMC subunit of condensin I, in HeLa cells. We found that the association of hCAP-H, another non-SMC subunit of condensin I, with mitotic chromosomes depends on the presence of hCAP-D2. Moreover, chromatid axes, as defined by topoisomerase II and hCAP-E localization, are disorganized in the absence of hCAP-D2, and the resolution and segregation of sister chromatids are impaired. In addition, hCAP-D2 depletion affects chromosome alignment in metaphase and delays entry into anaphase. This suggests that condensin I is involved in the correct attachment between chromosome kinetochores and microtubules of the mitotic spindle. These results are discussed relative to the effects of depleting both condensin complexes.  相似文献   

19.
20.
De novo LINE-1 (long interspersed element-1, or L1) retrotransposition events are responsible for approximately 1/1,000 disease-causing mutations in humans. Previously, L1.2 was identified as the likely progenitor of a mutagenic insertion in the factor VIII gene in a patient with hemophilia A. It subsequently was shown to be one of a small number of active L1s in the human genome. Here, we demonstrate that L1.2 is present at an intermediate insertion allele frequency in worldwide human populations and that common alleles (L1.2A and L1.2B) exhibit an approximately 16-fold difference in their ability to retrotranspose in cultured human HeLa cells. Chimera analysis revealed that two amino acid substitutions (S1259L and I1220M) downstream of the conserved cysteine-rich motif in L1 open reading frame 2 are largely responsible for the observed reduction in L1.2A retrotransposition efficiency. Thus, common L1 alleles can vary widely in their retrotransposition potential. We propose that such allelic heterogeneity can influence the potential L1 mutational load present in an individual genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号