首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dothistroma septosporum is a haploid fungal pathogen that causes a serious needle blight disease of pines, particularly as an invasive alien species on Pinus radiata in the Southern Hemisphere. During the course of the last two decades, the pathogen has also incited unexpected epidemics on native and non‐native pine hosts in the Northern Hemisphere. Although the biology and ecology of the pathogen has been well documented, there is a distinct lack of knowledge regarding its movement or genetic diversity in many of the countries where it is found. In this study we determined the global population diversity and structure of 458 isolates of D. septosporum from 14 countries on six continents using microsatellite markers. Populations of the pathogen in the Northern Hemisphere, where pines are native, displayed high genetic diversities and included both mating types. Most of the populations from Europe showed evidence for random mating, little population differentiation and gene flow between countries. Populations in North America (USA) and Asia (Bhutan) were genetically distinct but migration between these continents and Europe was evident. In the Southern Hemisphere, the population structure and diversity of D. septosporum reflected the anthropogenic history of the introduction and establishment of plantation forestry, particularly with Pinus radiata. Three introductory lineages in the Southern Hemisphere were observed. Countries in Africa, that have had the longest history of pine introductions, displayed the greatest diversity in the pathogen population, indicating multiple introductions. More recent introductions have occurred separately in South America and Australasia where the pathogen population is currently reproducing clonally due to the presence of only one mating type.  相似文献   

2.
《Fungal biology》2019,123(10):773-782
For northern Europe Lecanosticta acicola is an emerging pine needle pathogen. This study gives a first look into the population genetics of the pathogen in Estonia, the first population documented in that region. The main aim of this study was to investigate the genetic diversity and population structure of the pathogen in this new region for the fungus. For this purpose, 104 isolates from 2010 to 2017 were analysed with 11 microsatellite and mating type markers. The stand where the pathogen's jump from an exotic host to the native Scots pine was recorded was also involved in this analysis. The analysis revealed low genetic diversity and a high number of clones that indicated L. acicola is an invasive species in northern Europe. Results suggest that several separate introductions have taken place and anthropogenic activity has apparently affected the spread of the pathogen. Clonal reproduction is dominating and although sexual reproduction is possible, it probably takes place infrequently.  相似文献   

3.
White pine blister rust is caused by the fungal pathogen Cronartium ribicola J.C. Fisch (Basidiomycota, Pucciniales). This invasive alien pathogen was introduced into North America at the beginning of the 20th century on pine seedlings imported from Europe and has caused serious economic and ecological impacts. In this study, we applied a population and landscape genetics approach to understand the patterns of introduction and colonization as well as population structure and migration of C. ribicola. We characterized 1,292 samples of C. ribicola from 66 geographic locations in North America using single nucleotide polymorphisms (SNPs) and evaluated the effect of landscape features, host distribution, and colonization history on the structure of these pathogen populations. We identified eastern and western genetic populations in North America that are strongly differentiated. Genetic diversity is two to five times higher in eastern populations than in western ones, which can be explained by the repeated accidental introductions of the pathogen into northeastern North America compared with a single documented introduction into western North America. These distinct genetic populations are maintained by a barrier to gene flow that corresponds to a region where host connectivity is interrupted. Furthermore, additional cryptic spatial differentiation was identified in western populations. This differentiation corresponds to landscape features, such as mountain ranges, and also to host connectivity. We also detected genetic differentiation between the pathogen populations in natural stands and plantations, an indication that anthropogenic movement of this pathogen still takes place. These results highlight the importance of monitoring this invasive alien tree pathogen to prevent admixture of eastern and western populations where different pathogen races occur.  相似文献   

4.
Beauveria bassiana is an important entomopathogenic fungus with widespread application in the biological control of harmful insect pests. This species is widely distributed as an anamorph while only two teleomorph specimens have been found in eastern China. However, little is known about the ecological conditions for sexual reproduction in natural populations of B. bassiana. Here, we collected 488 isolates of Chinese B. bassiana sensu stricto from five sites, in which teleomorph or anamorph occurred, and used molecular phylogenetic and haplotype information to determine phylogenetic diversity, mating types, and sexual reproductive potential in these populations. Molecular identification based on denaturing gradient gel electrophoresis (DGGE) and combined data of the nuclear intergenic region Bloc and translation elongation factor-1a (TEF) assemblage resolved five B. bassiana s.s phylogenetic species labeled according to their geographic origin: Europe/N. Africa 1, Asia 3, Asia 4, AFNEO_1, and N. America 2. In Guniujiang and Manshuihe collection sites, teleomorph isolates RCEF 0771 and RCEF 0382 were both identified as Europe/N. Africa 1 phylogenetic species. In addition, more than half of the isolates in five representative sites belonged to Europe/N. Africa 1. However, the teleomorph of B. bassiana s.s. was not detected in Kuankuoshui while isolates within Europe/N. Africa 1 were present at this site, and isolates belonging to Europe/N. Africa 1 were not found in either Jingyuetan or Dinghushan collection sites. Distribution of MAT1 and MAT2 mating type idiomorphs in Europe/N. Africa 1 were 51:69, 37:24, and 15:15 in Guniujiang, Manshuihe, and Kuankuoshui, respectively. The presence of teleomorph and roughly equal frequencies of opposite mating types indicate regular sexual reproduction in B. bassiana natural populations. The data offer a better understanding of the ecological conditions of sexual reproduction in natural populations of B. bassiana. These results also yield insights into the potential for sexual reproduction in other supposedly ‘asexual’ fungi.  相似文献   

5.
An integral part to understanding the biology of an invasive species is determining its origin, particularly in pest species. As one of the oldest known invasive species, the goals of this study were to evaluate the evidence of a westward expansion of Hessian fly into North America, from a potential singular introduction event, and the population genetic structure of current populations. Levels of genetic diversity and population structure in the Hessian fly were compared across North America, Europe, North Africa, Western Asia, and New Zealand. Furthermore, Old World populations were evaluated as possible sources of introduction. We tested diversity and population structure by examining 18 microsatellite loci with coverage across all four Hessian fly chromosomes. Neither genetic diversity nor population genetic structure provided evidence of a westward movement from a single introduction in North America. Introduced populations in North America did not show identity or assignment to any Old World population, likely indicating a multiple introduction scenario with subsequent gene flow between populations. Diversity and selection were assessed on a chromosomal level, with no differences in diversity or selection between chromosomes or between native and introduced populations.  相似文献   

6.
Tobacco blue mold, caused by Peronospora tabacina, is an oomycete plant pathogen that causes yearly epidemics in tobacco (Nicotiana tabacum) in the United States and Europe. The genetic structure of P. tabacina was examined to understand genetic diversity, population structure and patterns of migration. Two nuclear loci, Igs2 and Ypt1, and one mitochondrial locus, cox2, were amplified, cloned and sequenced from fifty‐four isolates of P. tabacina from the United States, Central America–Caribbean–Mexico (CCAM), Europe and the Middle East (EULE). Cloned sequences from the three genes showed high genetic variability across all populations. Nucleotide diversity and the population mean mutation parameter per site (Watterson's theta) were higher in EULE and CCAM and lower in U.S. populations. Neutrality tests were significant and the equilibrium model of neutral evolution was rejected, indicating an excess of recent mutations or rare alleles. Hudson's Snn tests were performed to examine population subdivision and gene flow among populations. An isolation‐with‐migration analysis (IM) supported the hypothesis of long‐distance migration of P. tabacina from the Caribbean region, Florida and Texas into other states in the United States. Within the European populations, the model documented migration from North Central Europe into western Europe and Lebanon, and migration from western Europe into Lebanon. The migration patterns observed support historical observations about the first disease introductions and movement in Europe. The models developed are applicable to other aerial dispersed emerging pathogens and document that high‐evolutionary‐risk plant pathogens can move over long distances to cause disease due to their large effective population size, population expansion and dispersal.  相似文献   

7.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

8.
Gracilaria vermiculophylla (Ohmi) Papenf., an agar‐producing red alga introduced from northeast Asia to Europe and North America, is often highly abundant in invaded areas. To assay its genetic diversity and identify the putative source of invasive populations, we analyzed the mitochondrial cytochrome c oxidase subunit I (cox1) gene from 312 individuals of G. vermiculophylla collected in 37 native and 32 introduced locations. A total of 19 haplotypes were detected: 17 in northeast Asia and three in Europe and eastern and western North America, with only one shared among all regions. The shared haplotype was present in all introduced populations and in ~99% of individuals in the introduced areas. This haplotype was also found at three native locations in east Korea, west Japan, and eastern Russia. Both haplotype and nucleotide diversities were extremely low in Europe and North America compared to northeast Asia. Our study indicates that the East Sea/Sea of Japan is a likely donor region of the invasive populations of G. vermiculophylla in the east and west Atlantic and the east Pacific.  相似文献   

9.
The global migration patterns of the fungal wheat pathogen Phaeosphaeria nodorum were analysed using 12 microsatellite loci. Analysis of 693 isolates from nine populations indicated that the population structure of P. nodorum is characterized by high levels of genetic diversity and a low degree of subdivision between continents. To determine whether genetic similarity of populations was a result of recent divergence or extensive gene flow, the microsatellite data were analysed using an isolation-with-migration model. We found that the continental P. nodorum populations diverged recently, but that enough migration occurred to reduce population differentiation. The migration patterns of the pathogen indicate that immigrants originated mainly from populations in Europe, China and North America.  相似文献   

10.
1. The distribution of Salix species among the continents. There are about 526 species of Salix in the world, most of which are distributed in the Northern Hemisphere with only a few species in the Southern Hemisphere. In Asia, there are about 375 species, making up 71.29 percent of the total in the world, including 328 endemics; in Europe, about 114 species, 21.67 percent with 73 endemics; in North America, about 91 species, 17.3 percent with 71 endemics; in Africa, about 8 species, 1.5 percent, with 6 endemics. Only one species occurs in South America. Asia, Europe and North America have 8 species in common (excluding 4 cultivated species). There are 34 common species between Asia and Europe, 14 both between Europe and North America and between Asia and North America, 2 between Asia and Africa. Acording to the Continental Drift Theory, the natural circumstances which promoted speciation and protected newly originated and old species were created by the orogenic movement of the Himalayas in the middle and late Tertiary. Besides, the air temperature was a little higher in Asia than in Europe and North America (except its west part) and the dominant glaciers were mountainous in Asia during the glacial epoch in the Quaternary Period. Then willows of Europe moved southwards to Asia. During the interglacial period they moved in opposite direction. Such a to-and-fro willow migration between Asia and Europe and between and North America occurred so often that it resulted in the diversity of willow species in Asia. Those species of willows common among the continents belong to the Arctic flora. 2. The multistaminal willows are of the primitive group in Salix. Asia has 28 species of multistaminal willows, but Europe has only one which is also found in Asia. These 28 species are divided into two groups, “northern type” and “southern type”, according to morphology of the ovary. The boundary between the two forms in distribution is at 40°N. The multistaminal willows from south Asia, Africa and South America are very similar to each other and may have mutually communicated between these continents in the Middle or Late Cretaceous Period. The southern type willows in south Asia are similar to the North American multistaminal willows but a few species. The Asian southern type willows spreaded all over the continents of Europe, Asia and North America through the communication between them before the Quaternany Period. Nevertheless, it is possible that the willows growing in North America immigranted through the middle America from South America. The Asian northern type multistaminal willows may have originated during the ice period. The multistaminal willows are more closed to populars in features of sexual organs. They are more primitive than the willows with 1-3 stamens and the most primitive ones in the genus. 3. The center of origin and development of willows Based on the above discussion it is reasonable to say that the region between 20°-40°N in East Asia is the center of the origin and differentiation of multistaminal willows. It covers Southern and Southwestern China and northern Indo-China Pennisula.  相似文献   

11.
The red clover casebearer, Coleophora deauratella, is an invasive pest of red clover grown for seed in North America. In 2006, an outbreak in Alberta, Canada was discovered that resulted in significant seed losses, while further invasion threatens the world’s largest red clover forage seed production region in Oregon, USA. Prior to the recent outbreak, C. deauratella was thought to be restricted to eastern North America in its invasive range. We sequenced a 615-bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene, and developed three microsatellite markers to assess the genetic diversity and population structure of C. deauratella in North America and its native range in Europe. We observed signatures of a founder effect in North American populations and a further loss of genetic diversity within Alberta populations. Most genetic differentiation was found between continents, with no evidence of isolation-by-distance within each continent. From the limited number of European populations sampled, a single introduction from Switzerland is the most probable source of North American populations based on similar mitochondrial diversity and lack of population differentiation. Within North America, based on increased genetic diversity compared to the rest of the continent, the first North American record from Ithaca, NY, and the first documented outbreak in southern Ontario in 1989, the initial C. deauratella invasion most likely occurred in southern Ontario, Canada or adjacent states in the USA, followed by transport throughout the continent. This study provides insight into the phylogeographic history of C. deauratella in North America and Europe and may help to identify a regional source of future classical biological control agents.  相似文献   

12.
《Palaeoworld》2016,25(2):318-324
The woodwardioid ferns are well-represented in the Northern Hemisphere, where they are disjunctly distributed throughout the warm temperate and subtropical regions of North America, Europe, and Asia. To infer the biogeographic history of the woodwardioid ferns, the phylogeny of Woodwardia was estimated using rbcL and rps4 sequences from divergent distribution regions including the Himalayas. Phylogenetic results support Woodwardia as a monophyletic group with Woodwardia areolatae and W. virginica as basal, these two species from eastern North America diverged early, which are sister clades to the remaining species from America, Europe, and Asia. Based on analyses of the fossil records of these species for divergence times, Woodwardia species were estimated to have diverged initially in the Paleogene of North America. After its New World origin, a greater diversification and expansion of Woodwardia occurred in eastern Eurasia, with the European arrival of Woodwardia radicans during the Middle Miocene. Compared to earlier reports, a migration back into North America via the Bering land bridge is consistent with these data.  相似文献   

13.
Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.  相似文献   

14.
The genetic structure of Mycosphaerella fijiensis populations around the world was examined using DNA restriction fragment length polymorphism (RFLP) markers. Allele frequencies at 19 nuclear RFLP loci were estimated in a sample of 136 M. fijiensis isolates from five geographical populations representative of banana-producing areas (South-East Asia including the Philippines and Papua New Guinea, Africa, Latin America and Pacific Islands). Within each population, gametic disequilibrium tests between the 19 nuclear RFLP loci were mainly non significant ( P > 0.05), indicating that random sexual reproduction occurred in these populations. All M. fijiensis populations had a high level of genotypic and allelic diversity ( H , gene diversity: 0.25–0.59). The highest levels of gene diversity were found in the two South-East Asian populations ( H : 0.57 and 0.59). Most of the alleles (> 88%) detected in Africa, Latin America and Pacific Islands populations were also detected in South-East Asian populations. Furthermore, a high and significant ( P < 0.05) level of genetic differentiation was observed among M. fijiensis geographical populations (overall estimate of Fst : 0.32). These results were consistent with the hypothesis that M. fijiensis originated in South-East Asia and spread recently to other parts of the world. The level of allelic diversity in M. fijiensis populations from regions other than South-East Asia was drastically reduced, indicating founder effects. The data also suggested rare occurrence of migration of M. fijiensis between continents.  相似文献   

15.
Emerging infectious diseases are implicated in the declines and extinctions of amphibians worldwide. Ranaviruses in the family Iridoviridae are a global concern and have caused amphibian die-offs in wild populations in North America, Europe, South America, and in commercial populations in Asia and South America. The movement of amphibians for bait, food, pets, and research provides a route for the introduction of ranaviruses into naive and potentially endangered species. In this report, we demonstrate that the California tiger salamander, Ambystoma californiense, is susceptible to Ambystoma tigrinum virus (ATV). This virus has not been previously reported in California tiger salamander, but observed mortality in experimentally infected animals suggests that California tiger salamander populations could be adversely affected by an ATV introduction.  相似文献   

16.
Li XM  Liao WJ  Wolfe LM  Zhang DY 《PloS one》2012,7(2):e31935
The mating system plays a key role during the process of plant invasion. Contemporary evolution of uniparental reproduction (selfing or asexuality) can relieve the challenges of mate limitation in colonizing populations by providing reproductive assurance. Here we examined aspects of the genetics of colonization in Ambrosia artemisiifolia, a North American native that is invasive in China. This species has been found to possess a strong self-incompatibility system and have high outcrossing rates in North America and we examined whether there has been an evolutionary shift towards the dependence on selfing in the introduced range. Specifically, we estimated outcrossing rates in one native and five invasive populations and compared levels of genetic diversity between North America and China. Based on six microsatellite loci we found that, like the native North American population, all five Chinese populations possessed a completely outcrossing mating system. The estimates of paternity correlations were low, ranging from 0.028-0.122, which suggests that populations possessed ~8-36 pollen donor parents contributing to each maternal plant in the invasive populations. High levels of genetic diversity for both native and invasive populations were found with the unbiased estimate of gene diversity ranging from 0.262-0.289 for both geographic ranges based on AFLP markers. Our results demonstrate that there has been no evolutionary shift from outcrossing to selfing during A. artemisiifolia's invasion of China. Furthermore, high levels of genetic variation in North America and China indicate that there has been no erosion of genetic variance due to a bottleneck during the introduction process. We suggest that the successful invasion of A. artemisiifolia into Asia was facilitated by repeated introductions from multiple source populations in the native range creating a diverse gene pool within Chinese populations.  相似文献   

17.
Sexual reproduction may be cryptic or facultative in fungi and therefore difficult to detect. Magnaporthe oryzae, which causes blast, the most damaging fungal disease of rice, is thought to originate from southeast Asia. It reproduces asexually in all rice‐growing regions. Sexual reproduction has been suspected in limited areas of southeast Asia, but has never been demonstrated in contemporary populations. We characterized several M. oryzae populations worldwide both biologically and genetically, to identify candidate populations for sexual reproduction. The sexual cycle of M. oryzae requires two strains of opposite mating types, at least one of which is female‐fertile, to come into contact. In one Chinese population, the two mating types were found to be present at similar frequencies and almost all strains were female‐fertile. Compatible strains from this population completed the sexual cycle in vitro and produced viable progenies. Genotypic richness and linkage disequilibrium data also supported the existence of sexual reproduction in this population. We resampled this population the following year, and the data obtained confirmed the presence of all the biological and genetic characteristics of sexual reproduction. In particular, a considerable genetic reshuffling of alleles was observed between the 2 years. Computer simulations confirmed that the observed genetic characteristics were unlikely to have arisen in the absence of recombination. We therefore concluded that a contemporary population of M. oryzae, pathogenic on rice, reproduces sexually in natura in southeast Asia. Our findings provide evidence for the loss of sexual reproduction by a fungal plant pathogen outside its centre of origin.  相似文献   

18.

Background

Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed.

Principal Findings

We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted.

Conclusions

This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments.  相似文献   

19.
Temperate species of Hypomyces and Cladobotryum that produce the red pigment aurofusarin are common on agaricoid and polyporoid basidiomata of species from five orders of Agaricomycetes. Several cause cobweb disease of commercially cultivated mushrooms resulting in serious losses. We sequenced rpb1, rpb2, tef1, and FG1093 regions in 90 wild strains and 30 strains from mushroom farms, isolated from Europe, North America, Africa, Asia, Australia, and New Zealand. Multigene analyses support the distinctness of five species but reveal Hypomyces rosellus to be paraphyletic, comprising several cryptic lineages. Hypomyces rosellus s. str. is characterised by wide dispersal and gene flow across Eurasia but does not occur in North America. Instead, the lineages from the West and the East Coast appear distinct, having given rise to species inhabiting the Southern Hemisphere. Our results reveal wide misuse of the name H. rosellus, especially for cobweb isolates. The majority of these belong to Hypomyces odoratus, including a weakly supported group of fungicide-resistant strains from Europe and North America sharing identical sequence data. New collections are presented for Cladobotryum rubrobrunnescens and Cladobotryum tenue as well as Cladobotryum multiseptatum and Hypomyces dactylarioides, all previously known only from their type material. The former species pair occurs in Europe and the latter in Australia and New Zealand. Separate lineages appear to be maintained by geographic isolation in North America and temperate Australasia but by host specialisation in the species occurring sympatrically in Europe and Asia. Both specialist and generalist host use strategies have evolved in the group. Although teleomorphs are known in most of the species and unnamed lineages, analyses of the five-gene regions suggest the prevalence of clonal reproduction in H. odoratus. This can be the reason for its success in mushroom farms, also facilitating the spread of fungicide resistance. While tef1 and rpb2 can be recommended for species delimitation, low variation, not exceeding 1 % in the whole ingroup, impeaches the use of ITS as a barcoding gene region in this group of fungi.  相似文献   

20.
We investigated the population structure of Grosmannia clavigera (Gc), a fungal symbiont of the mountain pine beetle (MPB) that plays a crucial role in the establishment and reproductive success of this pathogen. This insect-fungal complex has destroyed over 16 million ha of lodgepole pine forests in Canada, the largest MPB epidemic in recorded history. During this current epidemic, MPB has expanded its range beyond historically recorded boundaries, both northward and eastward, and has now reached the jack pine of Alberta, potentially threatening the Canadian boreal forest. To better understand the dynamics between the beetle and its fungal symbiont, we sampled 19 populations in western North America and genotyped individuals from these populations with eight microsatellite markers. The fungus displayed high haplotype diversity, with over 250 unique haplotypes observed in 335 single spore isolates. Linkage equilibria in 13 of the 19 populations suggested that the fungus reproduces sexually. Bayesian clustering and distance analyses identified four genetic clusters that corresponded to four major geographical regions, which suggested that the epidemic arose from multiple geographical sources. A genetic cluster north of the Rocky Mountains, where the MPB has recently become established, experienced a population bottleneck, probably as a result of the recent range expansion. The two genetic clusters located north and west of the Rocky Mountains contained many fungal isolates admixed from all populations, possibly due to the massive movement of MPB during the epidemic. The general agreement in north-south differentiation of MPB and G. clavigera populations points to the fungal pathogen's dependence on the movement of its insect vector. In addition, the patterns of diversity and the individual assignment tests of the fungal associate suggest that migration across the Rocky Mountains occurred via a northeastern corridor, in accordance with meteorological patterns and observation of MPB movement data. Our results highlight the potential of this pathogen for both expansion and sexual reproduction, and also identify some possible barriers to gene flow. Understanding the ecological and evolutionary dynamics of this fungus-beetle association is important for the modelling and prediction of MPB epidemics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号