首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3–1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species.  相似文献   

2.
Simple sequence repeats (SSRs) are widely used genetic markers in ecology, evolution, and conservation even in the genomics era, while a general limitation to their application is the difficulty of developing polymorphic SSR markers. Next‐generation sequencing (NGS) offers the opportunity for the rapid development of SSRs; however, previous studies developing SSRs using genomic data from only one individual need redundant experiments to test the polymorphisms of SSRs. In this study, we designed a pipeline for the rapid development of polymorphic SSR markers from multi‐sample genomic data. We used bioinformatic software to genotype multiple individuals using resequencing data, detected highly polymorphic SSRs prior to experimental validation, significantly improved the efficiency and reduced the experimental effort. The pipeline was successfully applied to a globally threatened species, the brown eared‐pheasant (Crossoptilon mantchuricum), which showed very low genomic diversity. The 20 newly developed SSR markers were highly polymorphic, the average number of alleles was much higher than the genomic average. We also evaluated the effect of the number of individuals and sequencing depth on the SSR mining results, and we found that 10 individuals and ~10X sequencing data were enough to obtain a sufficient number of polymorphic SSRs, even for species with low genetic diversity. Furthermore, the genome assembly of NGS data from the optimal number of individuals and sequencing depth can be used as an alternative reference genome if a high‐quality genome is not available. Our pipeline provided a paradigm for the application of NGS technology to mining and developing molecular markers for ecological and evolutionary studies.  相似文献   

3.
Aedes albopictus originates from Southeast Asia and is considered one of the most invasive species globally. This mosquito is a nuisance and a disease vector of significant public health relevance. In Europe, Ae. albopictus is firmly established and widespread south of the Alps, a mountain range that forms a formidable biogeographic barrier to many organisms. Recent reports of Ae. albopictus north of the Alps raise questions of (1) the origins of its recent invasion, and (2) if this mosquito has established overwintering populations north of the Alps. To answer these questions, we analyzed population genomic data from >4000 genome‐wide SNPs obtained through double‐digest restriction site‐associated DNA sequencing. We collected SNP data from specimens from six sites in Switzerland, north and south of the Alps, and analyzed them together with specimens from other 33 European sites, five from the Americas, and five from its Asian native range. At a global level, we detected four genetic clusters with specimens from Indonesia, Brazil, and Japan as the most differentiated, whereas specimens from Europe, Hong Kong, and USA largely overlapped. Across the Alps, we detected a weak genetic structure and high levels of genetic admixture, supporting a scenario of rapid and human‐aided dispersal along transportation routes. While the genetic pattern suggests frequent re‐introductions into Switzerland from Italian sources, the recovery of a pair of full siblings in two consecutive years in Strasbourg, France, suggests the presence of an overwintering population north of the Alps. The suggestion of overwintering populations of Ae. albopictus north of the Alps and the expansion patterns identified points to an increased risk of further northward expansion and the need for increased surveillance of mosquito populations in Northern Europe.  相似文献   

4.
Studies in ecology, evolution, and conservation often rely on noninvasive samples, making it challenging to generate large amounts of high‐quality genetic data for many elusive and at‐risk species. We developed and optimized a Genotyping‐in‐Thousands by sequencing (GT‐seq) panel using noninvasive samples to inform the management of invasive Sitka black‐tailed deer (Odocoileus hemionus sitkensis) in Haida Gwaii (Canada). We validated our panel using paired high‐quality tissue and noninvasive fecal and hair samples to simultaneously distinguish individuals, identify sex, and reconstruct kinship among deer sampled across the archipelago, then provided a proof‐of‐concept application using field‐collected feces on SGang Gwaay, an island of high ecological and cultural value. Genotyping success across 244 loci was high (90.3%) and comparable to that of high‐quality tissue samples genotyped using restriction‐site associated DNA sequencing (92.4%), while genotyping discordance between paired high‐quality tissue and noninvasive samples was low (0.50%). The panel will be used to inform future invasive species operations in Haida Gwaii by providing individual and population information to inform management. More broadly, our GT‐seq workflow that includes quality control analyses for targeted SNP selection and a modified protocol may be of wider utility for other studies and systems where noninvasive genetic sampling is employed.  相似文献   

5.
The high‐altitude environment may drive vertebrate evolution in a certain way, and vertebrates living in different altitude environments might have different energy requirements. We hypothesized that the high‐altitude environment might impose different influences on vertebrate mitochondrial genomes (mtDNA). We used selection pressure analyses and PIC (phylogenetic independent contrasts) analysis to detect the evolutionary rate of vertebrate mtDNA protein‐coding genes (PCGs) from different altitudes. The results showed that the ratio of nonsynonymous/synonymous substitutions (dN/dS) in the mtDNA PCGs was significantly higher in high‐altitude vertebrates than in low‐altitude vertebrates. The seven rapidly evolving genes were shared by the high‐altitude vertebrates, and only one positive selection gene (ND5 gene) was detected in the high‐altitude vertebrates. Our results suggest the mtDNA evolutionary rate in high‐altitude vertebrates was higher than in low‐altitude vertebrates as their evolution requires more energy in a high‐altitude environment. Our study demonstrates the high‐altitude environment (low atmospheric O2 levels) drives vertebrate evolution in mtDNA PCGs.  相似文献   

6.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

7.
Tea green leafhopper is one of the most dominant pests in major tea production regions of East Asia. This species has been variously identified as Empoasca vitis (Goëthe), Jacobiasca formosana (Paoli) and Empoasca onukii Matsuda in Mainland China, Taiwan and Japan, respectively. Recent study of DNA sequence data suggested that treatment of this pest as different species in these three adjacent regions is incorrect and that they were a single species; but the correct scientific name for the species has remained unclear. Consistent with the prior molecular evidence, morphological study shows that the male genital characters of Chinese specimens are the same as those of specimens from Japan, so the correct scientific name of tea green leafhopper in China is Empoasca (Matsumurasca) onukii Matsuda.  相似文献   

8.
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single‐copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long‐distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction‐expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high‐latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.  相似文献   

9.
Predatory natural enemies play key functional roles in biological control. Abundant predatory arthropod species have been recorded in tea plantation ecosystems. However, few studies have comprehensively evaluated the control effect of predatory arthropods on tea pests in the field. We performed a 1‐year field investigation and collected predatory arthropods and pests in the tea canopy. A total of 7931 predatory arthropod individuals were collected, and Coleosoma blandum (Araneae, Theridiidae) was the most abundant species in the studied tea plantation. The population dynamics between C. blandum and four main tea pest species (Aleurocanthus spiniferus, Empoasca onukii, Ectropis grisescens, and Scopula subpunctaria) were established using the individual number of predators and pests in each month. The results showed that C. blandum appeared to co‐occur in the tea canopy with A. spiniferus, Em. onukii, and Ec. grisescens in a longer period. The prey spectrum of C. blandum was further analyzed using DNA metabarcoding. Among prey species, A. spiniferus, Em. onukii, and Ec. grisescens were included, and the relative abundance and positive rates of target DNA fragments of A. spiniferus were greater than that of other two pests. Combined with the high dominance index of C. blandum, co‐occurrence between C. blandum and A. spiniferus in time and space and high positive rate and relative abundance of target DNA fragments of A. spiniferus, C. blandum was identified to prey on A. spiniferus, and C. blandum may be an important predator of A. spiniferus. Thus, C. blandum has potential as a biological control agent of A. spiniferus in an integrated pest management strategy.  相似文献   

10.
Longevity was influenced by many complex diseases and traits. However, the relationships between human longevity and genetic risks of complex diseases were not broadly studied. Here, we constructed polygenic risk scores (PRSs) for 225 complex diseases/traits and evaluated their relationships with human longevity in a cohort with 2178 centenarians and 2299 middle‐aged individuals. Lower genetic risks of stroke and hypotension were observed in centenarians, while higher genetic risks of schizophrenia (SCZ) and type 2 diabetes (T2D) were detected in long‐lived individuals. We further stratified PRSs into cell‐type groups and significance‐level groups. The results showed that the immune component of SCZ genetic risk was positively linked to longevity, and the renal component of T2D genetic risk was the most deleterious. Additionally, SNPs with very small p‐values (p ≤ 1x10‐5) for SCZ and T2D were negatively correlated with longevity. While for the less significant SNPs (1x10‐5 < p ≤ 0.05), their effects on disease and longevity were positively correlated. Overall, we identified genetically informed positive and negative factors for human longevity, gained more insights on the accumulation of disease risk alleles during evolution, and provided evidence for the theory of genetic trade‐offs between complex diseases and longevity.  相似文献   

11.
Species differentiation and local adaptation in heterogeneous environments have attracted much attention, although little is known about the mechanisms involved. Hyporhamphus intermedius is an anadromous, brackish‐water halfbeak that is widely distributed in coastal areas and hyperdiverse freshwater systems in China, making it an interesting model for research on phylogeography and local adaptation. Here, 156 individuals were sampled at eight sites from heterogeneous aquatic habitats to examine environmental and genetic contributions to phenotypic divergence. Using double‐digest restriction‐site‐associated DNA sequencing (ddRAD‐Seq) in the specimens from the different watersheds, 5498 single nucleotide polymorphisms (SNPs) were found among populations, with obvious population differentiation. We find that present‐day Mainland China populations are structured into distinct genetic clusters stretching from southern and northern ancestries, mirroring geography. Following a transplant event in Plateau Lakes, there were virtually no variations of genetic diversity occurred in two populations, despite the fact two main splits were unveiled in the demographic history. Additionally, dorsal, and anal fin traits varied widely between the southern group and the others, which highlighted previously unrecognized lineages. We then explore genotype–phenotype‐environment associations and predict candidate loci. Subgroup ranges appeared to correspond to geographic regions with heterogeneous hydrological factors, indicating that these features are likely important drivers of diversification. Accordingly, we conclude that genetic and phenotypic polymorphism and a moderate amount of genetic differentiation occurred, which might be ascribed to population subdivision, and the impact of abiotic factors.  相似文献   

12.
Target‐site mutations and detoxification gene overexpression are two major mechanisms conferring insecticide resistance. Molecular assays applied to detect these resistance genetic markers are time‐consuming and with high false‐positive rates. RNA‐Seq data contains information on the variations within expressed genomic regions and expression of detoxification genes. However, there is no corresponding method to detect resistance markers at present. Here, we collected 66 reported resistance mutations of four insecticide targets (AChE, VGSC, RyR, and nAChR) from 82 insect species. Next, we obtained 403 sequences of the four target genes and 12,665 sequences of three kinds of detoxification genes including P450s, GSTs, and CCEs. Then, we developed a Perl program, FastD, to detect target‐site mutations and overexpressed detoxification genes from RNA‐Seq data and constructed a web server for FastD (http://www.insect-genome.com/fastd). The estimation of FastD on simulated RNA‐Seq data showed high sensitivity and specificity. We applied FastD to detect resistant markers in 15 populations of six insects, Plutella xylostella, Aphis gossypii, Anopheles arabiensis, Musca domestica, Leptinotarsa decemlineata and Apis mellifera. Results showed that 11 RyR mutations in P. xylostella, one nAChR mutation in A. gossypii, one VGSC mutation in A. arabiensis and five VGSC mutations in M. domestica were found to be with frequency difference >40% between resistant and susceptible populations including previously confirmed mutations G4946E in RyR, R81T in nAChR and L1014F in VGSC. And 49 detoxification genes were found to be overexpressed in resistant populations compared with susceptible populations including previously confirmed detoxification genes CYP6BG1, CYP6CY22, CYP6CY13, CYP6P3, CYP6M2, CYP6P4 and CYP4G16. The candidate target‐site mutations and detoxification genes were worth further validation. Resistance estimates according to confirmed markers were consistent with population phenotypes, confirming the reliability of this program in predicting population resistance at omics‐level.  相似文献   

13.
Ash (Fraxinus spp.) is one of the most widely distributed tree genera in North America. Populations of ash in the United States and Canada have been decimated by the introduced pest Agrilus planipennis (Coleoptera: Buprestidae; emerald ash borer), having negative impacts on both forest ecosystems and economic interests. The majority of trees succumb to attack by A. planipennis, but some trees have been found to be tolerant to infestation despite years of exposure. Restriction site‐associated DNA (RAD) sequencing was used to sequence ash individuals, both tolerant and susceptible to A. planipennis attack, in order to identify single nucleotide polymorphism (SNP) patterns related to tolerance and health declines. de novo SNPs were called using SAMtools and, after filtering criteria were implemented, a set of 17,807 SNPs were generated. Principal component analysis (PCA) of SNPs aligned individual trees into clusters related to geography; however, five tolerant trees clustered together despite geographic location. A subset of 32 outlier SNPs identified within this group, as well as a subset of 17 SNPs identified based on vigor rating, are potential candidates for the selection of host tolerance. Understanding the mechanisms of host tolerance through genome‐wide association has the potential to restore populations with cultivars that are able to withstand A. planipennis infestation. This study was successful in using RAD‐sequencing in order to identify SNPs that could contribute to tolerance of A. planipennis. This was a first step toward uncovering the genetic basis for host tolerance to A. planipennis. Future studies are needed to identify the functionality of the loci where these SNPs occur and how they may be related to tolerance of A. planipennis attack.  相似文献   

14.
Crenate broomrape (Orobanche crenata Forsk.) is a serious long‐standing parasitic weed problem in Algeria, mainly affecting legumes but also vegetable crops. Unresolved questions for parasitic weeds revolve around the extent to which these plants undergo local adaptation, especially with respect to host specialization, which would be expected to be a strong selective factor for obligate parasitic plants. In the present study, the genotyping‐by‐sequencing (GBS) approach was used to analyze genetic diversity and population structure of 10 Northern Algerian O. crenata populations with different geographical origins and host species (faba bean, pea, chickpea, carrot, and tomato). In total, 8004 high‐quality single‐nucleotide polymorphisms (5% missingness) were obtained and used across the study. Genetic diversity and relationships of 95 individuals from 10 populations were studied using model‐based ancestry analysis, principal components analysis, discriminant analysis of principal components, and phylogeny approaches. The genetic differentiation (F ST) between pairs of populations was lower between adjacent populations and higher between geographically separated ones, but no support was found for isolation by distance. Further analyses identified four genetic clusters and revealed evidence of structuring among populations and, although confounded with location, among hosts. In the clearest example, O. crenata growing on pea had a SNP profile that was distinct from other host/location combinations. These results illustrate the importance and potential of GBS to reveal the dynamics of parasitic weed dispersal and population structure.  相似文献   

15.
The tea green leafhopper, Empoasca onukiiMatsuda (Hemiptera: Cicadellidae: Typhlocybinae), is a serious pest of tea plants in East Asia. Previous work has shown that two tea germplasms, Cd19 and Cd289, sustain less hopperburn damage by E. onukii than does Camellia sinensis (L.) O. Kuntze cv. ‘Yabukita’ (Theaceae), and E. onukii excretes less honeydew on these germplasms than on the susceptible Yabukita. This study investigated the feeding behavior of E. onukii with a direct current electropenetrograph (DC EPG) to compare feeding behaviors, including ingestion, on resistant tea germplasms and Yabukita. Feeding behaviors on the resistant germplasms were significantly restricted, with few bouts of active ingestion of short duration and long periods of non‐probing, whereas E. onukii engaged in active ingestion of long duration many times on the susceptible cv. Yabukita. The tea germplasms, Cd19 and Cd289, therefore showed strong resistance to E. onukii. Furthermore, the shape of puncture holes left after probing was compared between the susceptible Yabukita and the resistant germplasms. The puncture holes on Cd19 and Cd289 were indistinct in shape and closed compared with those on Yabukita.  相似文献   

16.
17.
To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high‐fat/high‐sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.  相似文献   

18.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

19.
Based on a mathematical model, I show that the amount of food in the habitat determines which among alternative methods for search of prey, respectively, for pursuit‐and‐capture give the shortest daily foraging time. The higher the locomotor activity, the higher the rate of energy expenditure and the larger the habitat space a predator can search for prey per time unit. Therefore, I assume that the more efficient a foraging method is, the higher its rate of energy expenditure. Survival selection favors individuals that use foraging methods that cover their energy needs in the shortest possible time. Therefore, I take the optimization criterion to be minimization of the daily foraging time or, equivalently, maximization of the rate of net energy gain. When time is limiting and food is in short supply, as during food bottleneck periods, low‐efficiency, low‐cost foraging methods give shorter daily foraging times than high‐efficiency, energy‐expensive foraging methods. When time is limiting, food is abundant and energy needs are large, as during reproduction, high‐efficiency high‐cost foraging methods give shorter daily foraging times than low‐efficiency low‐cost foraging methods. When time is not limiting, food is abundant, and energy needs are small, the choice of foraging method is not critical. Small animals have lower rates of energy expenditure for locomotion than large animals. At a given food density and with similar diet, small animals are therefore more likely than large ones to minimize foraging time by using high‐efficiency energy‐expansive foraging methods and to exploit patches and sites that require energy‐demanding locomotion modes. Survival selection takes place at food shortages, while low‐efficiency low‐cost foraging methods are used, whereas reproduction selection occurs when food is abundant and high‐efficiency energy‐expensive foraging methods do better. In seasonal environments, selection therefore acts on different foraging methods at different times. Morphological adaptation to one method may oppose adaptation to another. Such conflicts select against foraging and morphological specialization and tend to give species‐poor communities of year‐round resident generalists. But a stable year‐round food supply favors specialization, niche narrowing, and dense species packing.  相似文献   

20.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号